We investigated the ability of silver thin metal films to enhance photovoltaic conversion efficiency in blends of
poly-3-hexylthiophene (P3HT) and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM). By varying
the thickness of the silver films and developing a new fabrication routine that involves annealing for long periods of time
at low temperatures, we were able to reproducibly enhance photoconversion in P3HT/PCBM devices. Photovoltaic
conversion efficiency was monitored using internal photon to current conversion efficiency (IPCE) and current-voltage
measurements. We observed that plasmonic materials were able to enhance the conversion efficiencies of organic, bulk
heterojunction devices. The relationship between the surface plasmon resonance wavelength and overall device
performance is also presented with IPCE data. These preliminary studies indicate that plasmonic enhancement in bulk
heterojunction devices show promise to improve the viability of organic solar cells.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.