We study the phenomena connected with high concentration of incoming ions emerging during field-assisted migration in otpical glass. We find that ion dynamics are very different at concentrations higher and lower than a certain parameter called the transition concentration. To explain anomalies at high ionic concentrations, we introduce a supplementary local electric field. This field opposes to the field E0 existing in the glass at all concentrations of incoming ions and is connected with a local space charge. We investigate its dependence on concentration and on E0. These effects are studied using a model with concentration-dependent diffusion coefficients and mobilities. We present a method to obtain the concentration dependence of the relevant quantities. Theoretical curves are compared with experimental results measured in usual silicate glasses, during Ag+-Na+ exchanges.
Planar devices made by ion-exchange provide efficient active or active/passive functions. Compact amplifiers with 24 dB single pass gain for a single 980 nm laser diode pumping are presented, as well as 1535 nm lasers with 27% slope efficiency.
We present the analysis of a semi-leaky waveguide with the help of 3 different methods. Since the resulting numerical values still show some differences, the validity of these methods is discussed. Both theoretical and experimental studies of a semi-leaky waveguide show a maximum of the losses for an index of the superstate slightly greater than the index of the waveguide. We finally apply these results to design and characterize a polarizer based on the deposition of an anisotropic layer on an otherwise lossless waveguide.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.