In this paper we propose a novel approach for remote speckle-based sensing of mechanical vibrations in the Hirudo medicinalis leech central nervous system (CNS) connective tissue. Using this method, spontaneous vibrations generated at the connective tissue following partial cut injury are continuously and remotely monitored. A laser beam illuminates the connective tissue and back scattered defocused patterns at the far field are captured by the camera. The spatialtemporal spontaneous vibrations of the connective are monitored by tracking the speckle spatial-temporal trajectory. After applying correlation-based analysis we were able to detect these vibrations of the connective tissue during recovery with respect to control measurements. This approach is the first step towards understanding the possible involvement of the tissue movements for the recovering process via mechanical vibrations sensing of the leech CNS connective tissue.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.