Different from the previously reported cryogenic temperature measurement based on the fiber Bragg grating (FBG) sensor, we propose a novel cryogenic temperature measurement scheme with a fiber interferometric sensor. The proposed sensor is constructed by the extrinsic Fabry–Perot interferometer (EFPI) which is consisted of a ceramic ferrule, a copper sleeve and two fiber ends. Under the cryogenic surrounding, the cavity length of the EFPI will change with the thermal deformation of the copper sleeve. With liquid nitrogen, the surrounding temperature can be changed from 77K to room temperature, and as high as 2.246nm/K of the temperature sensitivity can be achieved at a temperature range from 113K-153K in the experiment, with a 12.38μm EFPI cavity. The proposed interferometric sensor will still have relatively high sensitivity at a temperature lower than 77K according to our numerical simulation, so, has good application prospect in cryogenic temperature environment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.