Photon-counting detectors are expected to bring a range of improvements to patient imaging with x-ray computed tomography (CT). One is higher spatial resolution. We demonstrate the resolution obtained using a commercial CT scanner where the original energy-integrating detector has been replaced by a single-slice, silicon-based, photon-counting detector. This prototype constitutes the first full-field-of-view silicon-based CT scanner capable of patient scanning. First, the pixel response function and focal spot profile are measured and, combining the two, the system modulation transfer function is calculated. Second, the prototype is used to scan a resolution phantom and a skull phantom. The resolution images are compared to images from a state-of-the-art CT scanner. The comparison shows that for the prototype 19 lp / cm are detectable with the same clarity as 14 lp / cm on the reference scanner at equal dose and reconstruction grid, with more line pairs visible with increasing dose and decreasing image pixel size. The high spatial resolution remains evident in the anatomy of the skull phantom and is comparable to that of other photon-counting CT prototypes present in the literature. We conclude that the deep silicon-based detector used in our study could provide improved spatial resolution in patient imaging without increasing the x-ray dose.
In this contribution, we therefore present an approach for reducing such metal artefacts by means of a three-pass reconstruction method. The method analyzes the reconstructed tomosynthesis volume for metal contributions. It eventually determines corresponding pixels in the projection data, and decomposes the projections accordingly into metal and nonmetal projections. After each projection set is reconstructed independently, the final, enhanced tomosynthesis volume is obtained by a non-linear blending operation.
The proposed approach was evaluated on a set of eight clinical cases. Each breast contained a metal clip, which is typically left as marker after biopsy. The proposed method achieved to retain the appearance of the metal object in the focal and its adjacent slices. At the same time complete removal of streak artefacts in all distant slices was achieved. Efficacy of the method in presence of larger objects was demonstrated in phantom studies, where visibility of microcalcifications was completely restored.
View contact details