A high power 1030 nm ytterbium-doped polarization maintained fiber laser with optimized parameters is presented in this paper. The master oscillator power amplifier system with counter-pumped amplifier is established. The output power is 900 W, along with a light-to-light efficiency of 64.2%. The amplified spontaneous emission suppression ratio of spectrum reaches to 40 dB with 3 dB linewidth of 0.14 nm. The polarization extinction ratio is 12 dB, and the beam quality factor is M2x=1.07, M2y=1.12. To the best of our knowledge, this is the first demonstration of 1030 nm high power fiber laser with narrow linewidth, near linear polarization, and neardiffraction-limited beam quality
Chirp pulse amplification (CPA) has been promoted as an effective way to explore the intensity frontier. High order dispersion induced by the stretcher and materials in the CPA system, which deteriorates both the pulse duration and temporal contrast, however, can not be absolutely compensated by the compressor. Placed at the Fourier plane of a 4f zero-dispersion stretcher consisting of a grating, the deformable mirror (DM) has been demonstrated as the modulator to compensate high order dispersion. Using the method of ray tracing, the relation between spectrum and position on DM has been obtained. It shows that the resolution of the deformable mirror can be controlled by adjusting the focal length and incident angle. We have simulated a typical Ti:sappire CPA system to revise the spectral phase by the DM. The result illustrates that if the spectral phase can be compensated, the temporal contrast will be improved by 2 order of magnitude.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.