KEYWORDS: Optical simulations, Holography, Near field, Telescopes, Sensors, Near field optics, Optical testing, Signal detection, Beam analyzers, Staring arrays
The Simons Observatory is a ground-based telescope array located at an elevation of 5200 meters, in the Atacama Desert in Chile, designed to measure the temperature and polarization of the cosmic microwave background. It comprises four telescopes: three 0.42-meter small aperture telescopes (SATs), focused on searching for primordial gravitational waves, and one 6-meter large aperture telescope, focused on studying small-scale perturbations. Each of the SATs will field over 12,000 TES bolometers, with two SATs sensitive to both 90 and 150GHz frequency bands (SAT-MF1, and SAT-MF2), while the third SAT is sensitive to 220 and 280GHz frequency bands. Prior to its deployment in 2023, the optical properties of SAT-MF1 were characterized in the laboratory. We report here on measurements of beam maps acquired using a thermal source on SAT-MF1, along with measurements of near-field beam maps using a holographic method that enables characterization of both the amplitude and phase of the beam response, yielding an estimate of the far-field radiation pattern received by the telescope. We find that the near-field half-width-half-maximum (HWHM) requirements are met across the focal plane array for the 90GHz frequency band, and through most of the focal plane array for the 150GHz frequency band. Namely, the mean of the bandpass averaged HWHM of the edge-detector universal focal plane modules match the simulated HWHM to 10.4%, with the discrepancy caused by fringing in the simulation. The measured radial profile of the beams matches simulations to within 2dB from the beam center to at least the -10dB level. Holography estimates of the far-field 90GHz beams match the full-width-half-maximum from simulation within 1%, and the beam radial profiles deviate by less than 2dB inside the central lobe. The success of the holography and thermal beam map experiments confirmed the optical performance were sufficient to meet the science requirements. SAT-MF1 was deployed to Chile in June, 2023. On-site observations are currently underway.
The Simons Observatory (SO) group of instruments are together pursuing a major step forward in the ground-based study of the Cosmic Microwave Background (CMB). With one 6 m large-aperture telescope and three 0.4 m small-aperture telescopes (SATs), SO will strive to recover faint CMB polarization signals at a wide range of angular scales and across six frequency bands inside of atmospheric transmission windows spanning the range 27 GHz to 280 GHz. The first instrument to record celestial light is the first of two mid-frequency SATs, SAT MF-1, with over 3,000 dichroic pixels sensitive to two frequency bands centered at 90 and 150 GHz. This instrument began observing in October 2023, and features a cryogenically-cooled polarization modulator consisting of a spinning half-wave plate, a set of three silicon lenses with metamaterial anti-reflection coating, and a focal plane of seven modules referred to as universal focal-plane modules (UFMs), each containing 1,720 AlMn transition-edge sensor (TES) bolometers coupled to a 100 mK bath. In this proceedings, we report on initial efforts to calibrate the TES bolometer response to electrical and optical signals and preliminary characterization of possible confounding signals like scan-synchronous pickup. We comment on how these elements pertain to the analysis of systematic errors relating to the ultimate goal of the SO SAT program: the further constraint of the tensor-to-scalar ratio, r, and the possibility of primordial gravitational waves generated in the early universe by a period of inflation.
The Simons Observatory is a new ground-based cosmic microwave background experiment, which is currently being commissioned in Chile’s Atacama Desert. During its survey, the observatory’s small aperture telescopes will map 10% of the sky in bands centered at frequencies ranging from 27 to 280 GHz to constrain cosmic inflation models, and its large aperture telescope will map 40% of the sky in the same bands to constrain cosmological parameters and use weak lensing to study large-scale structure. To achieve these science goals, the Simons Observatory is deploying these telescopes’ receivers with 60,000 state-of-the-art superconducting transition-edge sensor bolometers for its first five year survey. Reading out this unprecedented number of cryogenic sensors, however, required the development of a novel readout system. The SMuRF electronics were developed to enable high-density readout of superconducting sensors using cryogenic microwave SQUID multiplexing technology. The commissioning of the SMuRF systems at the Simons Observatory is the largest deployment to date of microwave multiplexing technology for transition-edge sensors. In this paper, we show that a significant fraction of the systems deployed so far to the Simons Observatory’s large aperture telescope meet baseline specifications for detector yield and readout noise in this early phase of commissioning.
The Simons Observatory (SO) is a cosmic microwave background experiment composed of three 0.42 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT) in the Atacama Desert of Chile. The Large Aperture Telescope Receiver (LATR) was integrated into the LAT in August 2023; however, because mirrors were not yet installed, the LATR optical chain was capped at the 4K stage. In this dark configuration we are able to characterize many elements of the instrument without contributions from atmospheric noise. Here we show this noise is below the required upper limit and its features are well described with a simple noise model. Maps produced using this noise model have properties that are in good agreement with the white noise levels of our dark data. Additionally, we show that our nominal scan strategy has a minimal effect on the noise when compared to the noise when the telescope is stationary.
The Simons Observatory (SO) is a ground-based experiment aiming to enhance our understanding of the early universe, by making detailed measurements of the cosmic microwave background (CMB), across multiple spectral bands ranging from 30 to 280 GHz. The baseline project in the Atacama Desert in Chile, comprises four small-aperture telescopes (SATs) and one large-aperture telescope (LAT), housing a total of 60,000 detectors with angular resolutions ranging from 1-90 arc-minute. The low frequency detector arrays to be deployed in the LAT, feature anti-reflection (AR) coated lenslet-coupled sinuous antennas with a diplexing filter for the 30 and 40 GHz bands centers. Superconducting niobium (Nb) microstrip lines carry the signal for each polarization and band to titanium (Ti) load resistors which in turn heat up palladium (Pd) thermal ballasts and are sensed with transition edge sensors (TESs). The TESs are constructed from aluminum manganese (AlMn) and operate in their superconducting transitions (Tc) with a base temperature of 100mK. The sensors are read out by cryogenic microwave resonators using RF superconducting quantum interference devices (SQUIDs) in the microwave multiplexing (uMux) scheme. In these proceedings, we report on the current status of design, fabrication and characterization of the Simons Observatory low frequency detectors fabricated by UC Berekeley. The fabricated detector arrays have an average bolometer yield of 94% and desirable radio frequency (RF) characteristics.
The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) survey experiment that consists of three 0.5 m small-aperture telescopes (SATs) and one 6 m large-aperture telescope (LAT), sited at an elevation of 5200 m in the Atacama Desert in Chile. In order to meet the sensitivity requirements set for next-generation CMB telescopes, the LAT will deploy 30,000 transition edge sensor (TES) detectors at 100 mK across 7 optics tubes (OT), all within the Large Aperture Telescope Receiver (LATR). Additionally, the LATR has the capability to expand to 62,000 TES across 13 OTs. The LAT will be capable of making arcminute-resolution observations of the CMB, with detector bands centered at 30, 40, 90, 150, 230, and 280 GHz. We have rigorously tested the LATR systems prior to deployment in order to fully characterize the instrument and show that it can achieve the desired sensitivity levels. We show that the LATR meets cryogenic and mechanical requirements, and maintains acceptably low baseline readout noise.
The Simons Observatory is a ground-based cosmic microwave background survey experiment that consists of three 0.5 m small-aperture telescopes and one 6 m large-aperture telescope, sited at an elevation of 5200 m in the Atacama Desert in Chile. SO will deploy 60,000 transition-edge sensor (TES) bolometers in 49 separate focal-plane modules across a suite of four telescopes covering 30/40 GHz low frequency (LF), 90/150 GHz mid frequency (MF), and 220/280 GHz ultra-high frequency (UHF). Each MF and UHF focal-plane module packages 1720 optical detectors spreading across 12 detector bias lines that provide voltage biasing to the detectors. During observation, detectors are subject to varying atmospheric emission and hence need to be re-biased accordingly. The re-biasing process includes measuring the detector properties such as the TES resistance and responsivity in a fast manner. Based on the result, detectors within one bias line then are biased with suitable voltage. Here we describe a technique for re-biasing detectors in the modules using the result from bias-step measurement.
The Simons Observatory (SO) is a ground-based cosmic microwave background survey experiment that consists of three 0.5 m small-aperture telescopes and one 6 m large-aperture telescope, sited at an elevation of 5,200 m in the Atacama Desert in Chile. The SO focal planes will be tiled with 49 universal focal-plane modules (UFMs), in which transition-edge sensor detectors are coupled to microwave SQUID multiplexing readout components. These detector modules contain a stack of silicon wafers and chips, which are encased in an aluminum shield and electrically connected with over 10,000 wire bonds. To ensure the UFMs will maintain their electrical and mechanical integrity throughout their expected lifetime, we have developed a program of robustness testing. This program involves repeated cryogenic cycling to mimic a lifetime of operation in the field. We also describe electrical validation tools that enable the debugging of electrical shorts that can appear during assembly and device screening. As a result of these tests and developments, we expect that the UFMs will maintain operability through in-lab module screening and at least five seasons of observation in Chile.
The Simons Observatory (SO) will be a cosmic microwave background (CMB) survey experiment with three small-aperture telescopes (SATs) and one large-aperture telescope (LAT), which will observe from the Atacama Desert in Chile. In total, SO will field over 60,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure or constrain numerous cosmological quantities. The SATs are optimized for a primordial gravitational wave signal in a parity odd polarization power spectrum at a large angular scale. We will present the latest status of the SAT development.
The Simons Observatory is a suite of instruments sensitive to temperature and polarization of the cosmic microwave background. Five telescopes will host over 60,000 highly multiplexed transition edge sensor (TES) detectors. The universal focal plane modules (UFMs) package multichroic TES detectors with microwave multiplexing electronics compatible with all five receivers. The low-frequency arrays are lenslet-coupled sinuous antennas sensitive to 30 and 40 GHz. The mid-frequency and ultra-high-frequency UFMs are horn-coupled orthomode transducer arrays sensitive to 90/150 GHz and 225/280 GHz, respectively. Here we present the design, assembly details, and initial results of the first UFM.
I will describe our development of a four kilopixel photometric imaging camera paired with a 1.5 meter crossed Dragone telescope. The focal plane is composed of aluminum kinetic inductance detectors (KIDs) fabricated on crystalline silicon tiles. The tiles contain 960 KIDs and are approximately 100 mm x 100 mm in size. KID pairs, each sensitive to an orthogonal linear polarization, are coupled to a waveguide/feedhorn machined from aluminum. A single block, with 480 waveguides/feedhorns arranged in a hexagonal close-pack configuration, is paired with each detector tile. Initial tests with prototype KID tiles show the expected noise and optical performance. Full-scale tiles have now been fabricated with >90% yield, and are currently being characterized. The imager is intended for terrestrial applications, and an initial demonstration with the telescope is planned for early 2020. With relatively minor changes to the KID design, it could also be optimized for astronomical applications.
Millimeter-wave imaging provides a promising option for long-range target detection through optical obscurants such as fog, which often occur in marine environments. Given this motivation, we are currently developing a 150 GHz polarization-sensitive imager using a relatively new type of superconducting pair-breaking detector, the kinetic inductance detector (KID). This imager will be paired with a 1.5 m telescope to obtain an angular resolution of 0.09° over a 3.5° field of view using 3,840 KIDs. We have fully characterized a prototype KID array, which shows excellent performance with noise strongly limited by the irreducible fluctuations from the ambient temperature background. Full-scale KID arrays are now being fabricated and characterized for a planned demonstration in a maritime environment later this year.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.