Fringe projection profilometry (FPP) based on the binary defocusing technique (BD) shows great potential in high-speed 3-D imaging. Due to the constant defocusing degree, existing binary defocusing operations require adopting similar-wavelength fringe patterns, thereby forming a long imaging sequence in multi-frequency temporal phase unwrapping (TPU). In this paper, we propose a few-pattern defocusing FPP for efficient and accurate 3-D imaging. The imaging sequence consists of only 6 hybrid images, namely 2 unit-frequency ramp images, 2 low-frequency, and 2 high-frequency sinusoidal fringe images. Combining unit-frequency ramp and low-frequency fringe images, the unknown average intensity and fringe orders of fringe images can be determined. Consequently, the final absolute phase map can be extracted from the high-frequency fringe images. Moreover, a kernel-optimized dithering technique is presented to generate the projected patterns of hybrid images. In this dithering technique, a dynamic kernel and a dual-objective function ensure the optimal binarization of defocused images with different grayscale variations. Experiment results verify the proposed few-pattern defocusing FPP achieves efficient 3-D imaging with a measurement accuracy of 0.02 mm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.