We study decoherence in continuously cooled atom interferometers by performing Raman-Ramsey fringe measurements in a continuous beam of 3D-sub-Doppler-cooled rubidium atoms. The atom beam is produced by a two-stage cold atom source that is designed to mitigate the decoherence of atomic interference caused by cooling induced fluorescence. The atom beam source produces a collimated beam of over 109 atoms/s that is cooled by polarization gradient cooling to temperatures as low as 14 µK. We infer the potential performance of this atom beam source in a cold-atom gyroscope and use numerical models of motion in 6 degrees of freedom to study the expected performance on dynamic platforms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.