To meet the anticipated future demand for optical wireless high data rates, our study proposed a deep learning model-based adaptive digital pre-equalization scheme for visible light communication (VLC) channels is proposed to increase the data rate. We established the deep learning model to predict pre-equalization parameter (PEP) which is adaptive for various VLC channels. The proposed system is flexible and adaptive for commercial light emitting diode with different channel conditions. It improves the bandwidth of different VLC channels up to 125 MHz and has been validated on a 250-Mbps testbed. Based on the experimental results, the PEP update time is at most 5.1 s, and the bit error ratio is always <1 × 10 − 6 while using the PEP in the deep learning network. Meanwhile, the predicted and optimal values of the PEP correspond at 250 Mbps, and the maximum error between the predicted and optimal values of the PEP are only 7 for various channel conditions, including optical power, data rate, send distance, and send angle. The adaptive pre-equalization capability of the proposed system would be a universal digital solution for high-speed access in 6G scenarios combined with the VLC spectrum.
In order to improve the system bandwidth and realize high-speed real-time visible light communication, this paper proposed an analog pre-emphasis method based on a red LED, which equalized the high-frequency signal of the red LED in the frequency domain. A field programmable gate array (FPGA) generated non-return-to-zero on-off keying (NRZ-OOK) modulated signal, which was pre-emphasized by an analog pre-emphasis circuit and then emitted by a red LED. The experimental results show that the proposed method achieves a communication rate of 246Mbps and a BER of 0 under the experimental conditions of a communication distance of 3m, LED power of 0.3W, and a real-time communication duration of 1 hour.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.