In this paper, we have presented an effective yield improvement methodology that can help both manufacturing
foundries, fabless and fab-lite companies to identify systematic failures. It uses the physical addresses of failing bits
from wafer sort results to overlay to inline wafer defect inspection locations. The inline defect patterns or the design
patterns where overlay results showed matches were extracted and grouped by feature similarity or cell names. The potentially problematic design patterns can be obtained and used for design debug and process improvement.
We present a complete method for the characterization and modeling of flare based on the measurement of the modulation transfer function (MTF) of scanners. A point-spread function (PSFscat) representing only the scattered light or flare in the tool is inferred by comparing the measured MTF with a calculated MTF for aberration-free imaging. This PSFscat is then used to predict the effect of flare for different layouts. In particular, local variations in pattern density are shown to couple with mid- and short-range flare and lead to significant CD non-uniformity across the field. Finally, we examine double exposure techniques that are sensitive to flare because of the total light reaching the wafer, from the two masking steps.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.