The Very Large Telescope Interferometer (VLTI) is a wonderful infrastructure for long-baseline interferometry. MATISSE, the Multi AperTure mid-Infrared SpectroScopic Experiment, installed at the VLTI focus, accesses high resolution imaging over a wide spectral domain of the mid-infrared. The instrument is a spectro-interferometric imager operating in the L, M, and N transmission windows and combining four optical beams from the VLTI’s unit or auxiliary telescopes. We propose at the SPIE conference to advertise the use of the MATISSE instrument. We will illustrate the instrument capabilities through astrophysical results recently achieved (the focus on the astrophysical results is not reported in the article). We also show what are the expected future infrastructure optimizations and instrument adaptations (off-axis tracking, frame of GRAVITY+) that will permit to push the sensitivities and accuracies for the astrophysical programs in the context of the JWST.
MATISSE is the 2nd generation mid-infrared (3.0μm to 12.0μm) spectro-interferometric instrument of the Very Large Telescope Interferometer (VLTI). It was designed to deliver its advertised performance when supported by an external fringe tracker. This proceeding gives an historical account of how the fringe tracker of the GRAVITY instrument, another 2nd generation K-band spectro-astrometric instrument of VLTI, became this external fringe tracker. For a more technical and performance-oriented description of the GRAVITY for MATISSE project, Woillez, Petrov, et al. (2024) should be consulted.
The European Interferometry Initiative (EII; https://european-interferometry.eu/) is an open association of Institutes from 15 European countries collaborating on the exploitation and development of optical/infrared long baseline interferometry. Since its formation in the early 2000s the EII has fostered the development of interferometry in Europe and worldwide through programmes that develop the technology for making interferometric observations, support existing users of interferometry facilities, and encourage new generations of users to learn about and exploit interferometry for science observations. We discuss the successes and lessons learned in the delivery of the programmes initiated and managed by the EII, including the development of new hardware, software and techniques, the initiation of the VLTI Expertise Centres to support users, and training and networking through the VLTI summer schools and the Fizeau exchange programme. We discuss possible future programmes to further support and develop the interferometry community.
After the pause imposed by the pandemic, VLTI resumed science operations and restarted technical activities aiming to close commissionings of different modes. While the community develops projects of visiting instruments, the VLTI infrastructure is about to be significantly upgraded with new visible AO and laser guide star systems by the GRAVITY+ project. VLTI operations also evolve, in particular to support imaging programmes, but also towards a more automated and integrated model. In this context, we will present a review of current capabilities, ongoing activities and future plans for the VLTI.
The Very Large Telescope Interferometer (VLTI) is currently the best infrastructure for long-baseline interferometry in particular in terms of sensitivity and accessibility to the general user. MATISSE, installed at the VLTI focus since end of 2017, belongs to the second generation instruments. MATISSE, the Multi AperTure mid-Infrared SpectroScopic Experiment, for the first time accesses high resolution imaging over a wide spectral domain of the mid-infrared. The instrument is a spectro-interferometric imager in the atmospheric transmission windows called L, M, and N, from 2.8 to 13.0 microns, and combines four optical beams from the VLTI’s unit or auxiliary telescopes. The instrument utilises a multi-axial beam combination that delivers spectrally dispersed fringes. The signal provides the following quantities at several spectral resolutions: photometric flux, coherent flux, visibility, closure phase, wavelength differential visibility and phase, and aperture-synthesis imaging. MATISSE can operate as a stand alone instrument or with the GRA4MAT set-up employing the GRAVITY fringe tracking capabilities. The updated MATISSE performance are presented at the conference together with a selection of two front-line science topics explored since the start of the science operations in 2019. Finally we present the perspective and benefit of two technical improvements foreseen in the coming years: the MATISSE-Wide off-axis fringe tracking capability and new adaptive optics for the UTs in the context of the GRAVITY+ project.
RHAPSODY is an intensity profile reconstruction code built to handle 2D centro-symmetric structures using interferometric data. RHAPSODY has been built to provide the community with a code requiring less parameters than classical image reconstruction code. This has as consequence leading to less solution non-uniqueness problems, a better convergence, and a better dynamic range assuming a centro-symmetric source at all wavelengths. RHAPSODY main steps are organized as following: In the first place, at each wavelengths, the code build a unique 1D structure made of concentric discrete uniform rings. Then, it applies the Hankel transform to reconstruct the equivalent visibility profile. Next, a change of coordinate is used on the 1D visibility profile to simulate the inclination and the rotation of the structure in the 2D Fourier plane. After a fitting process on the interferometric observations based on a χ2 and Bayesian method, RHAPSODY apply an inverse Fourier transform and reconstruct the equivalent structure in the 2D image plane. According to preliminary tests made on RHAPSODY, the code is able to well reproduce 1D and 2D centrosymmetric structures up to a dynamic range of 0.5%.
ESO’s VLT interferometer (VLTI) is a general-user optical/infrared interferometric facility. Its operations scheme is fully integrated into the well-established scheme of all VLT instruments and profits enormously from this experience and the implemented infrastructure to offer a unique service to the community. Based on the greatly improved capabilities of the 2nd generation VLTI instruments and taking advantage of a further development of ESO’s Observation Handling Tools, we have evolved the VLTI operations scheme as well. We have offered to VLTI investigators the possibility to indicate baseline configurations in a more flexible way and have introduced nested scheduling containers to better formalize the observational strategy. We have prepared for dedicated support of different types of interferometric observations. For imaging observations specifically, we have introduced an improved workflow to fill the uv plane and to handle time-critical imaging.
Combining adaptive optics and interferometric observations results in a considerable contrast gain compared to single-telescope, extreme AO systems. Taking advantage of this, the ExoGRAVITY project is a survey of known young giant exoplanets located in the range of 0.1” to 2” from their stars. The observations provide astrometric data of unprecedented accuracy, being crucial for refining the orbital parameters of planets and illuminating their dynamical histories. Furthermore, GRAVITY will measure non-Keplerian perturbations due to planet-planet interactions in multi-planet systems and measure dynamical masses. Over time, repetitive observations of the exoplanets at medium resolution (R = 500) will provide a catalogue of K-band spectra of unprecedented quality, for a number of exoplanets. The K-band has the unique properties that it contains many molecular signatures (CO, H2O, CH4, CO2). This allows constraining precisely surface gravity, metallicity, and temperature, if used in conjunction with self-consistent models like Exo-REM. Further, we will use the parameter-retrieval algorithm petitRADTRANS to constrain the C/O ratio of the planets. Ultimately, we plan to produce the first C/O survey of exoplanets, kick-starting the difficult process of linking planetary formation with measured atomic abundances.
Following the arrival of MATISSE, the second-generation of VLTI instrumentation is now complete and was simultaneously enhanced by a major facility upgrade including the NAOMI Adaptive Optics on the Auxiliary Telescopes. On the Unit Telescopes, significant efforts were also made to improve the injection stability into VLTI instruments. On top of GRAVITY's own evolution, its fringe tracker is now being used to allow coherent integrations on MATISSE (the so-called GRA4MAT project). Meanwhile, operations also evolved to be more flexible and make the most of an extended observing parameter space. In this context, we present an overview of the current VLTI performances. Finally, we will report on on-going improvements such as the extension of the longest baselines.
The Planet Formation Imager (PFI) is a near- and mid-infrared interferometer project with the driving science goal of imaging directly the key stages of planet formation, including the young proto-planets themselves. Here, we will present an update on the work of the Science Working Group (SWG), including new simulations of dust structures during the assembly phase of planet formation and quantitative detection efficiencies for accreting and non-accreting young exoplanets as a function of mass and age. We use these results to motivate two reference PFI designs consisting of a) twelve 3m telescopes with a maximum baseline of 1.2km focused on young exoplanet imaging and b) twelve 8m telescopes optimized for a wider range of young exoplanets and protoplanetary disk imaging out to the 150K H2O ice line. Armed with 4 x 8m telescopes, the ESO/VLTI can already detect young exoplanets in principle and projects such as MATISSE, Hi-5 and Heimdallr are important PFI pathfinders to make this possible. We also discuss the state of technology development needed to make PFI more affordable, including progress towards new designs for inexpensive, small field-of-view, large aperture telescopes and prospects for Cubesat-based space interferometry.
MATISSE is the 2nd generation mid-infrared instrument designed to combine four VLTI telescopes in the L, M and N spectral bands. It’s commissioning in Paranal is in progress since March 2018 and should continue until the middle of 2019. Here we report, in June 2018, the commissioning plan, tools and the preliminary results of the first two commissioning runs in MATISSE that show that the instrument is already fully operational with a sensitivity well beyond its specification. The quality of the measurements, as they obtained by the current observing procedures and delivered by the current pipeline are already good enough for a broad range of science observations. However, our results remain quite preliminary and they will be quite substantially improved by the work in progress in instrument calibration, observing procedures optimization and data processing updates.
The Planet Formation Imager (PFI) project aims to provide a strong scientific vision for ground-based optical astronomy beyond the upcoming generation of Extremely Large Telescopes. We make the case that a breakthrough in angular resolution imaging capabilities is required in order to unravel the processes involved in planet formation. PFI will be optimised to provide a complete census of the protoplanet population at all stellocentric radii and over the age range from 0.1 to ~100 Myr. Within this age period, planetary systems undergo dramatic changes and the final architecture of planetary systems is determined. Our goal is to study the planetary birth on the natural spatial scale where the material is assembled, which is the "Hill Sphere" of the forming planet, and to characterise the protoplanetary cores by measuring their masses and physical properties. Our science working group has investigated the observational characteristics of these young protoplanets as well as the migration mechanisms that might alter the system architecture. We simulated the imprints that the planets leave in the disk and study how PFI could revolutionise areas ranging from exoplanet to extragalactic science. In this contribution we outline the key science drivers of PFI and discuss the requirements that will guide the technology choices, the site selection, and potential science/technology tradeoffs.
The late evolutionary stages of stellar evolution are a key ingredient for our understanding in many fields of astrophysics, including stellar evolution and the enrichment of the interstellar medium (ISM) via stellar yields. Already the first interferometric campaigns identified evolved stars as the primary targets because of their extended and partially optically thin atmospheres, and the brightness in the infrared. Interferometric studies spanning different wavelength ranges, from visual to mid-infrared, have greatly increased our knowledge of the complex atmospheres of these objects where different dynamic processes are at play. In less than two decades this technique went from measuring simple diameters to produce the first images of stellar surfaces. By scanning the extended atmospheres we constrained theoretical models, learnt about molecular stratification, dust formation, and stellar winds, and there is still a lot to be done. In this contribution I will review the recent results that optical/infrared interferometry has made on our current understanding of cool evolved stars. The presentation will focus on asymptotic giant branch stars, and red supergiants. I will discuss the challenges of image reconstruction, and highlight how this field of research will benefit from the synergy of the current interferometric instrument(s) with the second generation VLTI facilities GRAVITY and MATISSE. Finally I will conclude with a short introspection on applications of a visible interferometer and of the the Planet Formation Imager (PFI) to the field of evolved stars.
MATISSE represents a great opportunity to image the environment around massive and evolved stars. This will allow one to put constraints on the circumstellar structure, on the mass ejection of dust and its reorganization, and on the dust-nature and formation processes. MATISSE measurements will often be pivotal for the understanding of large multiwavelength datasets on the same targets collected through many high-angular resolution facilities at ESO like sub-millimeter interferometry (ALMA), near-infrared adaptive optics (NACO, SPHERE), interferometry (PIONIER, GRAVITY), spectroscopy (CRIRES), and mid-infrared imaging (VISIR). Among main sequence and evolved stars, several cases of interest have been identified that we describe in this paper.
We present an overview of the scientific potential of MATISSE, the Multi Aperture mid-Infrared SpectroScopic Experiment for the Very Large Telescope Interferometer. For this purpose we outline selected case studies from various areas, such as star and planet formation, active galactic nuclei, evolved stars, extrasolar planets, and solar system minor bodies and discuss strategies for the planning and analysis of future MATISSE observations. Moreover, the importance of MATISSE observations in the context of complementary high-angular resolution observations at near-infrared and submillimeter/millimeter wavelengths is highlighted.
Observing late type stars with an interferometer is rather easy" because of their brightness in the near-infrared and their extended atmosphere. On the other hand the interpretation of interferometric observations is very tricky, especially when it comes to asymmetric structures detected via phase measurements. Our team developed dedicated 2D Roche lobe models to interpret observations of binary candidates. The models are generated through a software that simulates binary systems in a realistic way, using a Roche representation of the stellar surfaces and the MARCS stellar atmosphere models. In this contribution we present the method and show examples of synthetic interferometric data.
Interferometry is a very powerful observational technique known in astronomy for many decades. Its application to main-sequence stars, however, is still limited to only brightest objects. In this work we aim to explore the application of interferometry to a special class of main-sequence stars known as chemically peculiar (CP) stars. These stars demonstrate surface chemical abundance inhomogeneities (spots) that usually cover a considerable part of the stellar surface and induce a pronounced spectral and photometric variability. Interferometry thus has a potential to naturally resolve such spots in single stars, providing unique complementary information about spots sizes and contrasts. By means of numerical experiments we derive the actual interferometric requirements essential for the CP stars research that can be addressed in future instrument development. The first comparison between theoretical predictions and already available observations will also be discussed.
Claudia Paladini, Daniela Klotz, Stephane Sacuto, Josef Hron, Markus Wittkowski, Eric Lagadec, Tijl Verhoelst, Alain Jorissen, Andrea Richichi, Martin Groenewegen, Hans Olofsson, Franz Kerschbaum
The mass-loss process is a key ingredient for our understanding in many fields of astrophysics, including stellar evolution and the enrichment of the interstellar medium (ISM) via stellar yields. We combined the capability of the VLTI/MIDI and VLT/VISIR instruments with very recent Herschel/PACS observations to characterize the geometry of mass loss from evolved red giants on the Asymptotic Giant Branch (AGB) at various scales. This paper describes the sample of objects, the observing strategy, the tool for the interpretation, and preliminary MIDI results for two targets: U Ant and θ Aps.
KEYWORDS: Visibility, Stars, Error analysis, Data modeling, Interferometry, Geometrical optics, Monte Carlo methods, Physics, Statistical analysis, Black bodies
We developed the tool GEM-FIND that allows to constrain the morphology and brightness distribution of ob-
jects. The software fits geometrical models to spectrally dispersed interferometric visibility measurements in the
N-band using the Levenberg-Marquardt minimization method. Each geometrical model describes the bright-
ness distribution of the object in the Fourier space using a set of wavelength-independent and/or wavelength-
dependent parameters. In this contribution we numerically analyze the stability of our nonlinear fitting approach
by applying it to sets of synthetic visibilities with statistically applied errors, answering the following questions:
How stable is the parameter determination with respect to (i) the number of uv-points, (ii) the distribution of
points in the uv-plane, (iii) the noise level of the observations?
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.