In this work, we connected the analytical determination of the EUV Dill C parameter for different photodecomposable base quencher (PDB) architectures using a standard addition method, the influence of the underlying hardmask on postdevelop EUV resist residue formation, and the vertical PAG and PDB concentration profile throughout the depth of the film determined by GCIB-TOF-SIMS for a model EUV resist system. The collected experimental data was used to feed a resist patterning simulation engine, in order to understand the additive effect of component distribution and efficiency on EUV stochastics and its potential impact on defect control. Our results unveiled a link between PDB quantum yield and nanoscopic material distribution uniformity. In parallel, a differentiating behavior was observed among inorganic underlayers: metal oxide hardmasks (HMs) invariably induced more resist residue than non-metallic HMs. Last, a specific example of joint PAG and PDB concentration depletion at the resist-substrate interface was related to a potential increase in microbridge defectivity as a result of poor stochastic counts.
The effective dose delivered by an EUV lithography cluster is composite function of the dose provided by the scanner EUV radiation source and illuminator, the reflectance of the EUV mask, the transmission of the scanner projection optics and the PEB conditions experienced by the EUV sensitive imaging resist. Open frame test wafer exposures and the sub-E0 analysis technique described at SPIE2018 have been adopted to characterize and monitor the impact of the factors above on the effective dose stability and uniformity. Wafer exposure sequences and layouts, and the details of the analysis methodology were customized to study adverse dose factors in each of the areas described above.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.