PLATO (PLAnetary Transits and Oscillations) mission is a space-based optical multi-camera photometer mission of the European Space Agency to identify and characterize exoplanets and their hosting stars using two main techniques: planetary transit and asteroseismology.
The PLATO spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems and the sun shield with attached solar arrays. The Payload Module consists of a highly stable optical bench, equipped with 26 optical imagers/cameras covering a global field of view of > 2232 deg2. The design includes two types of cameras: 24 Normal Cameras (N-CAMs) with measurement cadences of 25s and 2 Fast Cameras (F-CAMs) with a cadence of 2.5s. The PLATO spacecraft data is complemented by ground based observations and processed by a dedicate Science Ground Segment.
We describe the mission and spacecraft architecture and provide a view of the current status of development.
The PLAnetary Transits and Oscillations of stars mission (PLATO) is the M3 mission in ESA’s Cosmic Vision 2015-2025 Programme, see Rauer et al. (2014).1 The PLATO mission aims at detecting and characterizing extrasolar planetary systems, including terrestrial exoplanets around bright solar-type stars up to the habitable zone. To be able to perform the required high precision photometric monitoring of the large target stars sample, PLATO is based on a multi-telescope configuration consisting of 26 Cameras, so as to provide simultaneously a large field of view and a large collecting aperture. The optical design is identical for all cameras and consists of a 6-lens dioptric design with a 120 mm entrance pupil and an effective field of view of more than 1000 square degrees. As for every optical system, especially dioptric ones, the presence of optical ghosts can dramatically affect the scientific observations. Thanks to the application of an excellent anti-reflection coating, PLATO’s cameras are by design very insensitive to ghosts. However, the residual faint back reflections focused on the detectors have to be simulated and considered during science operation (target selection) and in data correction algorithms. This article describes the different optical analyses performed to estimate the importance of ghosts in PLATO’s cameras, as well as the simulations performed to support the preparation of the test campaign on the first PLATO camera: the engineering model. Finally, the test execution, data analysis and results are presented and compared to the simulated data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.