The low cross-plane thermal conductivity of Quantum Cascade Lasers (QCLs) is a significant limitation in their Continuous-Wave (CW) performance. Structural parameters such as individual layer thicknesses and interface density vary for QCLs with different target emission wavelengths, and these design parameters are expected to influence the cross-plane thermal conductivity. Though previous works have used theoretical models and experimental data to quantify thermal conductivity, the correlation between target wavelength and thermal conductivity has yet to be reported for QCLs. In this work, we observe a general trend across a group of QCLs emitting from 3.7 to 8.7 𝜇m: as the QCL design changes to reduce wavelength, the thermal conductivity decreases as well. Numerically, we measured an approximate 70% reduction in thermal conductivity, from 1.5 W/(m·K) for the 8.7 m device, to 0.9 W/(m·K) for the 3.7 𝜇m device. Analysis of these structures with the Diffuse Mismatch Model (DMM) for Thermal Boundary Resistance (TBR) shows that the largest contribution of this effect is the impact of superlattice interface density on the thermal conductivity. The observed changes in conductivity result in significant changes in projected CW optical power and should be considered in laser design.
Quasicontinuous wave operation of midinfrared quantum cascade lasers are shown to have increased average output power with good beam quality. The ability to enhance average power by a significant fraction of CW power motivates the development of a model to estimate and project performance at varying duty cycles based on a previously developed continuous wave power projection model. The model takes into account pulse to pulse changes in temperature profile to project a transient steady-state temperature distribution. This temperature distribution is used to project both peak and average power in agreement with measurements. Preliminary model projections suggest that high average brightness may be achieved using a reduced number of stages and a greater scaling of core width than would be permissible for CW lasing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.