KEYWORDS: Signal processing, Sensors, Signal detection, Digital signal processing, Field programmable gate arrays, Electronics, Resonators, Filtering (signal processing), Data conversion, Detector arrays
On August 22, 2019, the Origins Space Telescope (OST) Study Team delivered the OST Mission Concept Study Report and the OST Technology Development Plan to NASA Headquarters. A key component of this study report includes the technology roadmap for detector readout and how new radio frequency-system-on-chip (RFSoC)-based technology would be used to advance the far-infrared polarimeter instrument concept for a spaceflight mission. We present our current results as they pertain to the implementation of algorithms, hardware, and architecture for instrument signal processing of this proposed observatory using RFSoC technology. We also present a small case study, comparing a more conventional readout system with one based on the RFSoC and show a trade of system complexity versus technology readiness level.
The far-infrared imager and polarimeter (FIP) for the Origins Space Telescope (Origins) is a basic far-infrared imager and polarimeter. The camera will deliver continuum images and polarization measurements at 50 and 250 μm. Currently available detector technologies provide sufficient sensitivity for background limited observations from space, at least on a single pixel basis. FIP incorporates large next-generation superconducting detector arrays and our technology development plan will push the pixel numbers for the arrays to the required size of 8000. Two superconducting detector technologies are currently candidates for the instrument: transition edge sensors or microwave kinetic inductance devices. Using these detectors and taking advantage of the cryogenic telescope that is provided by Origins, FIP will achieve mapping speeds of up to eight orders of magnitude faster than what has been achieved by existing observatories. The science drivers for FIP include observations of solar system objects, dust properties, and magnetic field studies of the nearby interstellar medium, and large scale galaxy surveys to better constrain the star formation history of the universe to address one of the main themes of Origins: “How does the Universe work?” In addition to the science, the FIP instrument plays a critical functional role in aligning the mirrors during on orbit observatory commissioning.
KEYWORDS: Space telescopes, Telescopes, James Webb Space Telescope, Mirrors, Optical instrument design, Astronomy, Space operations, Cryogenics, Aerospace engineering, Cryocoolers
The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the universe today? How do habitable planets form? How common are life-bearing worlds? We describe how Origins was designed to answer these alluring questions. We discuss the key decisions taken by the Origins mission concept study team, the rationale for those choices, and how they led through an exploratory design process to the Origins baseline mission concept. To understand the concept solution space, we studied two distinct mission concepts and descoped the second concept, aiming to maximize science per dollar and hit a self-imposed cost target. We report on the study approach and describe the concept evolution. The resulting baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. The chosen architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch. The cryo-thermal system design leverages James Webb Space Telescope technology and experience.
The Origins Survey Spectrometer (OSS) is a multi-purpose far-IR spectrograph for Origins. Operating at the photon background limit, OSS covers the 25- to 588-μm wavelength range instantaneously at a resolving power (R) of 300 using six logarithmically spaced grating modules. Each module couples at least 30 and up to 100 spatial beams simultaneously, enabling true [three-dimensional (3D)] spectral mapping. In addition, OSS provides two high-resolution modes. The first inserts a long-path Fourier-transform spectrometer (FTS) into a portion of the incoming light in advance of the grating backends, enabling R up to 43 , 000 × [ λ / 112 μm ] , while preserving the grating-based sensitivity for line detection. The second incorporates a scanning etalon in series with the FTS to provide R up to 300,000 for the 100-to 200-μm range.
The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid- and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20 μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588 μm, making wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins’ natural background-limited sensitivity.
The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid- and far-infrared wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of Herschel, the largest telescope flown in space to date. After a 3 ½ year study, the Origins Science and Technology Definition Team will recommend to the Decadal Survey a concept for Origins with a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (MISC-T) will measure the spectra of transiting exoplanets in the 2.8 – 20 μm wavelength range and offer unprecedented sensitivity, enabling definitive biosignature detections. The Far-IR Imager Polarimeter (FIP) will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer (OSS) will cover wavelengths from 25 – 588 μm, make wide-area and deep spectroscopic surveys with spectral resolving power R ~ 300, and pointed observations at R ~ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The telescope has a Spitzer-like architecture and requires very few deployments after launch. The cryo-thermal system design leverages JWST technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins’ natural backgroundlimited sensitivity.
The OSS on the Origins Space Telescope is designed to decode the cosmic history of nucleosynthesis, star formation, and supermassive black hole growth with wide-area spatial-spectral 3-D surveys across the full 25 to 590 micron band. Six wideband grating modules combine to cover the full band at R=300, each couples a long slit with 60-190 beams on the sky. OSS will have a total of 120,000 background-limited detector pixels in the six 2-D arrays which provide spatial and spectral coverage. The suite of grating modules can be used for pointed observations of targets of interest, and are particularly powerful for 3-D spectral spectral surveys. To chart the transition from interstellar material, particularly water, to planetary systems, two high-spectral-resolution modes are included. The first incorporates a Fourier-transform spectrometer (FTS) in front of the gratings providing resolving power of 25,000 (δv = 12 km/s) at 179 µm to resolve water emission in protoplanetary disk spectra. The second boosts the FTS capability with an additional etalon (Fabry-Perot interferometer) to provide 2 km/s resolution in this line to enable detailed structural studies of disks in the various water and HD lines. Optical, thermal, and mechanical designs are presented, and the system approach to the detector readout enabling the large formats is described.
The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, one of the four science and technology definition studies of NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey. "Concept-1" is a cold (4 K) 9 m space telescope with five instruments, while "concept 2" consists of a cold 5.9 m telescope and four instruments, providing imaging and spectroscopic capabilities between 5μm and 600μm. The sensitivity provided by the observatory will be a three to four orders of magnitude improvement over currently achieved observational capabilities, allowing to address a wide range of new and so far inaccessible scientific questions, ranging from bio-signatures in the atmospheres of exo-planets to the production of the first metals in the universe right after the end of re-ionization. Here we present the Far Infrared Imager and Polarimeter (FIP) for OST. The camera will cover four bands, 50μm, 100μm, 250μm, and 500μm. In the "concept 1" version of the instrument, FIP will allow for differential polarimetry with the ability to observe two colors simultaneously, while all four bands can be observed simultaneously in total power mode. The confusion limit in the total power mode will be reached in only 8 ms at 500μm, while at 50μm the source density in the sky is so low that at OST's angular resolution of (see manuscript for symbol) 2" in this band the source confusion limit will only be reached after about two hours of integration with the "concept-2" version of FIP ("concept-1" FIP will not be confusion limited at 50m, no matter how long it integrates). Science topics that can be addressed by the camera include, but are not limited to, galactic and extragalactic magnetic field studies, deep galaxy surveys, and outer Solar System objects.
The Origins Space Telescope (OST) will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did the universe evolve in response to its changing ingredients? How common are life-bearing planets? To accomplish its scientific objectives, OST will operate at mid- and far-infrared wavelengths and offer superlative sensitivity and new spectroscopic capabilities. The OST study team will present a scientifically compelling, executable mission concept to the 2020 Decadal Survey in Astrophysics. To understand the concept solution space, our team studied two alternative mission concepts. We report on the study approach and describe both of these concepts, give the rationale for major design decisions, and briefly describe the mission-enabling technology.
KEYWORDS: Signal to noise ratio, Reconstruction algorithms, Radar, Compressed sensing, Signal detection, Detection and tracking algorithms, Matrices, Monte Carlo methods, Environmental sensing, Target detection
In this paper, radar detection via compressive sensing is explored. Compressive sensing is a new theory of
sampling which allows the reconstruction of a sparse signal by sampling at a much lower rate than the Nyquist
rate. By using this technique in radar, the use of matched filter can be eliminated and high rate sampling can be
replaced with low rate sampling. In this paper, compressive sensing is analyzed by applying varying factors such
as noise and different measurement matrices. Different reconstruction algorithms are compared by generating
ROC curves to determine their detection performance. We conduct simulations for a 64-length signal with 3
targets to determine the effectiveness of each algorithm in varying SNR. We also propose a simplified version
of Orthogonal Matching Pursuit (OMP). Through numerous simulations, we find that a simplified version of
Orthogonal Matching Pursuit (OMP), can give better results than the original OMP in noisy environments
when sparsity is highly over estimated, but does not work as well for low noise environments.
This paper discusses the concept and design of a real-time Digital Beamforming Synthetic Aperture Radar (DBSAR) for
airborne applications which can achieve fine spatial resolutions and wide swaths. The development of the DBSAR
enhances important scientific measurements in Earth science, and serves as a prove-of-concept for planetary exploration
missions. A unique aspect of DBSAR is that it achieves fine resolutions over large swaths by synthesizing multiple
cross-track beams simultaneously using digital beamforming techniques. Each beam is processed using SAR algorithms
to obtain the fine ground resolution without compromising fine range and azimuth resolutions. The processor uses an
FPGA-based architecture to implement digital in-phase and quadrature (I/Q) demodulation, beamforming, and range
and azimuth compression. The DBSAR concept will be implemented using the airborne L-Band Imaging Scatterometer
(LIS) on board the NASA P3 aircraft. The system will achieve ground resolutions of less than 30 m and swaths of 10
km from an altitude of 8 km.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.