We present results on the comparison of different THz technologies for the detection and identification of a variety of
explosives from our laboratory tests that were carried out in the framework of NATO SET-193 “THz technology for
stand-off detection of explosives: from laboratory spectroscopy to detection in the field” under the same controlled
conditions. Several laser-pumped pulsed broadband THz time-domain spectroscopy (TDS) systems as well as one
electronic frequency-modulated continuous wave (FMCW) device recorded THz spectra in transmission and/or
reflection.
Letter bombs are an increasing problem for public authorities, companies and public persons. Nowadays every big company uses in his headquarters inspection system to check the incoming correspondence. Generally x-ray systems are used to inspect complete baskets or bags of letters. This concept which works very fine in big company with a large postal center is not usable for small companies or private persons. For an office environment with a small number of letters x-ray systems are too expensive and oversized. X-ray systems visualize the wires and electric circuits inside the envelope. If a letter contains no metallic components but hazard materials or drugs, the dangerous content is invisible for the most low-cost x-ray systems. Millimeter wave imagining systems offer the potential to close this gap.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.