Large aperture single crystal silicon turning flat mirrors provide a new method of high energy laser beam sampling for optical performance diagnostic measurements. This new sampling technique has been successfully implemented on the Alpha Laser Optimization program where transmitted beams through two, uncooled silicon mirrors have been used to measure total energy, instantaneous power, spectral content, and beam jitter. The accuracy of these measurements has been confirmed by independent measurements of these same parameters, and the results fall within expected error bars.
KEYWORDS: Mirrors, Resonators, Chemical lasers, High power lasers, Laser systems engineering, Hydrogen fluoride lasers, Silicon, Aluminum, Chemical elements, Optical components
Alpha is a megawatt-class hydrogen fluoride, continuous wave, space based chemical laser brassboard which demonstrates and validates technology for space-based applications. It consists of a cylindrical gain generator that exhausts radially outward through circumferential nozzles forming an annular lasing media and an annular ring resonator, which extracts the laser energy. Technical innovations first demonstrated on Alpha include: (1) use of extruded aluminum components, (2) diamond turned, annular optics made of molybdenum, (3) uncooled silicon mirrors, (4) light weight optical benches, and (5) active alignment. Alpha first lased in 1989, and has repeatably demonstrated megawatt-class power and excellent beam quality. Using Alpha, TRW has demonstrated the use of low weight uncooled mirrors in very high power lasers to reduce system jitter. They have performed flawlessly and beam jitter levels were significantly reduced.
Alpha is a megawatt-class ground demonstration of a hydrogen fluoride, continuous wave, space-based chemical laser. The laser operates in the infrared at 2.8 microns. The basic device consists of a cylindrical combustion chamber that exhausts radially outward through circumferential nozzles into an annular lasing area. An annular ring resonator is used to extract the laser energy from this area. Technical firsts include: (1) use of aluminum combustion chamber/nozzle ring modules, (2) diamond turned, water-cooled optics made of molybdenum for low thermal distortion with good heat transfer, (3) use of uncooled silicon mirrors in a megawatt-class laser system, (4) an optical bench made of aluminum honeycomb, and (5) active controls to adjust alignment of selected mirrors and the optical bench.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.