Quantifying the oceanic whitecaps and subsurface bubble is critical to characterize the long term evolution of the ocean environment as they are the primary mechanism through which atmosphere and ocean exchange heat, momentum, and gas. Bubble bursting is a major production mechanisms for cloud condensation nuclei in the marine boundary layer (Quinn and Bates 2011). Turbulence driven exchange at the air-sea interface is associated with wave breaking and this includes bubble-mediated gas transfer (Woolf et al., 2007). A global coverage of oceanic whitecaps and subsurface bubble properties can provide invaluable information to study the climate system.
In the past few years, we have demonstrated several applications of the ocean surface and subsurface signal from the space lidar onboard the CALIPSO satellite. We have shown that this signal included the unambiguous signature of surface and subsurface bubbles but this feature still has to be exploited. In this presentation, we will show results of whitecaps/bubble identification from the dual wavelength polarized space lidar return. We will present preliminary results of bubble properties quantification and comparison with NRL wave models.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.