We have developed two range gating laser imaging systems, which base on modulated gain method and centroid algorithm respectively. The system based on centroid algorithm uses a pulse laser as transmitter and CCD with image intensifier, through delaying gated receiver repetitiously to acquire a series of 2D time-slicing image to restore the three-dimensional rang image. The imaging system based on modulated gain mainly adopts the same pulse laser is used and CCD with image intensifier with constant and modulated gain over time, which can capture two different intensity images of echo pulse respectively in order to restore the three-dimensional range image. We conduct a series of experiments with the tow system, and the results are consistent with the actual practical ones. By comparing result of laser imaging based on the two systems, we summarize the different strength and weaknesses, requirements, and challenges to lay a solid foundation for later experiments.
Gain modulation imaging technique is one of the prominent schemes for scannerless lidar. By controlling the gate width, it’s easy to suppress backscatter noise and make the image more accurately. Imaging range and accuracy of gain modulation laser imaging become a research focus at present. According to the principle of imaging, the signal energy and the noise energy reaching the imager can be found. Further signal-to-noise ratio can be obtained. Previous theoretical models consider only linear gain condition. However the influence of laser pulse width and other factors are less taken into consideration. These models will have a certain deviation with the actual one. By simulating the nonlinear gain with consideration of the laser pulse width and lambert spherical radiation, more accurate SNR model of gain modulation laser imaging is obtained. On this basis, the established SNR model can be used to estimate the experimental distance with good imaging effect. It provides the theoretical basis for subsequent experiment system parameter selection and image processing.
We have developed a whole set of range gated laser imaging system with ~3km maximum acquisition distance, the
system uses a Nd:YAG electro-optical Q-switched 532nm laser as transmitter, a double micro channel plate as gated
sensor, all the components are controlled by the a trigger control unit with accuracy of subnanosecond. A imaging
scheme is designed for imaging the large building ~500m away, and a sequence of images are obtained in the
experiment, which are the basic data for 3D reconstruction; to improve the range resolution, we study the temporal
distribution of intensity of the received signal, and use centroid algorithm for data processing. We compare the 3D image
with the theoretical model, and the results are corresponding.
KEYWORDS: 3D modeling, Sensors, Pulsed laser operation, Laser imaging, Detection and tracking algorithms, 3D image processing, Reconstruction algorithms, Imaging systems, 3D acquisition, Algorithm development
A range gated laser imaging system has been designed and developed for high precision three-dimensional imaging. The system uses a Nd:YAG electro-optical Q-switched 532nm laser as transmitter, a double microchannel plate as gated sensor, and all the components are controlled by a trigger control unit with accuracy of subnanosecond. An experimental scheme is also designed to achieve high precision imaging; a sequence of 2D “slice” images are acquired in the experiment, and these images provide the basic data for 3D reconstruction. Basing on the centroid algorithm, we have developed the 3D reconstruction algorithm, and use it to reconstruct a 3D image of target from the experimental data. We compare the 3D image with the system performance model, and the results are corresponding.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.