We will present recent advances in direct bonding of dissimilar materials like glass to metal, silicon or ceramics using ultrashort lasers. The process can potentially displace traditional bonding techniques such as epoxy, diffusion, anodic, etc offering a clean, fast and flexible new alternative. It relies on highly controlled laser heat input from <10ps pulses along a user-defined toolpath at the material interface and has been proven to work on various material combinations including BK7, quartz, fused silica, sapphire glasses of varying size, thickness and shape with metals (aluminium, s.steel, titanium, etc), silicon and ceramics (silicon nitride).
Bonding of metals to transparent materials (glasses, crystals, etc.) is commonly used for several applications in modern defence manufacturing including for hermetic sealing and precision optics mounting. Common methods include the use of organic adhesives or glass frit interlayers as well as diffusion, anodic and arc bonding. Such techniques are typically esoteric and operator skill dependent. They can introduce large heat input risking the device integrity or are subject to post-process creep and volatile components outgassing, which can lead to contamination of optical surfaces and subsequent device degradation. Adhesives in particular are not truly hermetic and so are largely unsuitable for electro-optics and miniature lasers fabrication. They are sensitive to environment, swelling in the presence of moisture, softening at high temperatures or becoming stiff and brittle at low temperatures. All of the above are highly undesirable. Apart from limiting the range of material combinations possible to join, such bonding often ends up as a lengthy, error prone manufacturing step. This explains why so many manufacturers would like to replace such bonding with a more deterministic process.
Recently [1] direct microwelding of glass to metal (BK7 and fused silica to Al) has been demonstrated utilising ultrafast lasers which offer non-contact fabrication with high precision, high process speed and very small heat affected zones. In this paper we will showcase a purpose-built ultrafast laser prototype for laser microwelding of 10-20mm thick bulk optics (lenses, waveplates, prisms) to flat aluminium or stainless steel mounts with sufficient bond strength for use in advanced manufacturing for defence applications. Various demonstrated case studies in aerospace electro-optics assemblies and flexible electronics hermetic sealing for device encapsulation will be discussed in detail including bond strength shear test characterisation, thermal and vibration cycling. This laser microwelding tool is suitable for early adoption of this microwelding technology and for process development in several other optical material welding applications (e.g. glass to silicon; glass to ceramic, Nd:YAG to metal, etc.).
The recent developments in the field of large area, flexible and printed electronics have fueled substantial advancements in Laser Printing and Laser Sintering, which have been attracting interest over the past decade. Resulting applications, ranging from flexible displays and sensors, to biometric devices and healthcare, have already showcased transformational advantages in terms of form factor, weight and durability. In HiperLAM project, Laser-Induced Forward Transfer (LIFT), combined with high speed laser micro-sintering are employed, as digital microfabrication tools for the demonstration of fully functional RFID antennas and fingerprint sensors based on highly viscous Ag and Cu nanoparticle inks. Having previously successfully demonstrated complex structures, this work’s focus is on increasing the process throughput and yield by increasing the laser repetition rate (up to 40 kHz) and scanning speed (up to 2 m/s), without compromising reliability and resolution. In order to gain insight into the effects of the incremented repetition rate on the printing procedure, the latter was monitored in real time via a high-speed camera, able to acquire up to 540.000 fps, coupled to the setup. Examples of resulting structures comprise well-defined interdigitated and spiral micro-electrodes with post-sintering electrical resistivity lower than 5 x bulk Ag and 3 x bulk Cu. The aforementioned results validate the compatibility of laser based processing with the field of flexible RFID tags and OTFT based fingerprint sensors and foster the wider adoption of LIFT and laser micro-sintering technology for laboratory and industrial use.
In this work we present picosecond DPSS laser surface texturing optimisation of automotive grade cast iron steel. This application attracts great interest, particularly in the automotive industry, to reduce friction between moving piston parts in car engines, in order to decrease fuel consumption. This is accomplished by partially covering with swallow microgrooves the inner surface of a piston liner and is currently a production process adopting much longer pulse (microsecond) DPSS lasers. Lubricated interface conditions of moving parts require from the laser process to produce a very strictly controlled surface topography around the laser formed grooves, whose edge burr height must be lower than 100 nm. To achieve such a strict tolerance, laser machining of cast iron steel was investigated using an infrared DPSS picosecond laser (10ps duration) with an output power of 16W and a repetition rate of 200 kHz. The ultrashort laser is believed to provide a much better thermal management of the etching process. All studies presented here were performed on flat samples in ambient air but the process is transferrable to cylindrical geometry engine liners. We will show that reducing significantly the edge burr below an acceptable limit for lubricated engine production is possible using such lasers and remarkably the process window lies at very high irradiated fluences much higher that the single pulse ablation threshold. This detailed experimental work highlights the close relationship between the optimised laser irradiation conditions as well as the process strategy with the final size of the undesirable edge burrs. The optimised process conditions are compatible with an industrial production process and show the potential for removing extra post)processing steps (honing, etc) of cylinder liners on the manufacturing line saving time and cost.
Lightweight, flexible substrates coated with thin film layers <0.5μm thick are commonly utilized for modern electronic devices that are portable and constantly reducing in size, weight, power consumption and material cost. Patterning techniques for these thin films are required to provide device functionality and alternatives to photolithography such as direct write laser processes are particularly attractive. However, for complex devices with multiple thin layers, the quality requirements for laser scribing are extremely high, since each individual thin film layer must be patterned without damaging the underlying thin film layer(s) and also provide a suitable topography for subsequent layers to be deposited upon. Hence, the choice of the laser parameters is critical for a number of emerging thin film materials used in flexible electronic devices such as ITO, pedot:PSS, silver nanoparticle inks, amongst others. These thin films can be extremely sensitive to the thermal interaction with lasers and this report outlines the influence of laser pulse duration and beam shaping techniques on laser patterning of these thin films and the implications for laser system design.
The direct write and non-contact nature of laser patterning is highly desirable as it is compatible with integration in rollto-roll production lines. The reduced thermal effects of ultrafast lasers are key to obtain selective removal of sensitive, thin film layers (<0.2µm). In this work, diode-pumped solid state (DPSS) picosecond and femtosecond pulse duration lasers are compared to identify the laser parameters and conditions required to produce high efficiency organic photovoltaics.
Organic semiconductors (OSC) are solution processable synthetic materials with high carrier mobility that promise to revolutionise flexible electronics manufacturing due to their low cost, lightweight and high volume low temperature printing in reel-to-reel (R2R) [1] for applications such as flexible display backplanes (Fig.1), RFID tags, and logic/memory devices. Despite several recent technological advances, organic thin film transistor (OTFT) printing is still not production-ready due to limitations mainly with printing resolution on dimensionally unstable substrates and device leakage that reduces dramatically electrical performance. OTFTs have the source-drain in ohmic contact with the OSC material to lower contact resistance. If they are unpatterned, a leakage pathway from source to drain develops which results in non-optimum on/off currents and not controllable device uniformity (Fig.2). DPSS lasers offer several key advantages for OTFT patterning including maskless, non-contact, dry patterning, scalable large area operation with precision registration, well-suited to R2R manufacturing at overall μm size resolutions. But the thermal management of laser processing is very important as the devices are very sensitive to heat and thermomechanical damage [2]. This paper discusses 343nm picosecond laser ablation trimming of 50nm thick PTAA, TIPS pentacene and other semiconductor compounds on thin 50nm thick metal gold electrodes in a top gate configuration. It is shown that with careful optimisation, a suitable process window exists resulting in clean laser structuring without damage to the underlying layers while also containing laser debris. Several order of magnitude improvements were recorded in on/off currents up to 106 with OSC mobilities of 1 cm2/Vsec, albeit at slightly higher than optimum threshold voltages which support demanding flexible display backplane applications.
Rapid developments in organic electronics promise low cost devices for applications such as OLED, organic transistors and organic photovoltaics on large-area glass or flexible substrates in the near future. The technology is very attractive as most device layers can be solution printed. But when directly patterned deposition is impossible, a post-patterning step is required and laser processing is gradually emerging as a key-enabling tool. DPSS lasers offer several advantages including maskless, non-contact, dry patterning, but also scalable large area processing, well suited to roll-to-roll manufacturing at μm resolutions. However, very few reports discuss in detail the merits of DPSS laser patterning technology, especially on flexible substrates. This paper describes the potential of ultrafast DPSS laser technology for OLED fabrication on foil and, specifically, picosecond laser ablation of PEDOT:PSS on multilayered barrier/foil or metal grids aimed as a synthetic alternative to inorganic transparent conductive electrodes. Key requirements include: (a) the complete removal of PEDOT layers without residue, (b) the complete absence of surface contamination from redeposited laser debris to avoid short circuiting and (c) no loss in performance of from laser exposure. We will demonstrate that with careful optimisation and appropriate choice of ultrafast laser, the above criteria can be fulfilled. A suitable process window exists resulting in clean laser structuring without damage to the underlying heat sensitive barrier layers whilst also containing laser debris. A low temperature ablation most likely proceeds via a stress-assisted (film fracture and ejection) process as opposed to vaporisation or other phase change commonly encountered with longer pulse lasers.
Laser milling of industrial materials like ceramics, dielectrics and metals is of significant commercial interest for microfabrication of micro-moulds and other micro-system devices. 2.5D laser machined structures were generated in alumina, tungsten and steel substrates using a nanosecond copper vapour laser (511nm) at 10 kHz. Preliminary results in fused silica, alumina and steel are also presented from a high repetition rate amplified mode-locked picosecond Nd:vanadate laser. It is shown that high quality surface finish can be achieved with both laser types; for example, average surface roughness, Ra ~ 300nm has been demonstrated in steel. Fused silica could only be processed with picosecond laser pulses. Volume removal rates are analysed, which are especially high for difficult materials like
tungsten (~0.1mm3/min) and are greater compared to other milling technology like micro-EDM. Surface roughness measurements in these materials using white light interferometry are reported along with SEM analysis.
Laser processing of glass is of significant commercial interest for microfabrication of "lab-on-a-chip" microfluidic devices. High repetition rate pulsed lasers have been investigated and provide adequate processing speeds but suffer from the inherent risk of laser-induced microcracking and other collateral damage induced in the glass. In this paper we present a comparative study between nanosecond deep UV (255nm) frequency doubled copper laser and femtosecond Ti:Sapphire (800nm) regenerative amplifier laser machining of borosilicate glass. Microchannel scribing and high aspect ratio hole drilling is demonstrated in thick glass using direct writing and mask projection techniques. The resulting material structure geometries have been examined using SEM microscopy and white light interferometry. The feasibility of glass laser machining and the significance of each laser type for this application are discussed.
Lasers are an important tool in the fabrication of photonic components and in particular their use in scribing for separating LED dies on sapphire substrates. This paper describes scribing and cutting of sapphire and GaN using UV lasers (355nm and 266nm harmonics of Nd:YVO4 and 255nm harmonic of CVL). Scribing of sapphire at speed of 30mm/s have been achieved and cutting of sapphire of up to 700 microns thickness has been demonstrated.
With the aim of reducing the heat-affected zone to improve edge quality, we present results of drilling microholes using reshaped pulsed Gaussian laser beams. A diode-pumped, high repetition rate, nanosecond pulse duration 3rd harmonic Nd:YAG laser was reshaped such that the intensity gradient in the outer region of the focussed laser beam profile is increased. Compared to focussed Gaussian laser beams, such hard-edged intensity distributions produce smaller heat-affected zones. As a result there is less associated collateral damage, debris, remelt produced by the near-ablation threshold fluences. Specially designed spherically-aberrating Galilean telescopes are used to reshape the primary Gaussian laser beam into a quasi-tophat distribution at the mask plane. Gaussian illumination propagation simulations using Monte-Carlo ray tracing calculations compare well with measurements of reshaped distributions made with a beam profiler. Drilling trials in polymers and silicon nitride demonstrated improved edge quality, reduced debris and wall roughness and a significant reduction in the energy density required for drilling microholes of high aspect ratio.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.