GaN power amplifiers based on AlGaN-GaN high electron mobility transistor (HEMT) technology are produced for defense applications that require high voltage, high power, and high efficiency operation. Many groups have reported various failure mechanisms in GaN HEMTs over the last two decades. However, the fact that no dominant failure mode and mechanism has been identified is a major concern for space applications. Earlier our group reported radiation effects of commercial high-power GaN HEMTs exposed to protons and heavy ions as well as failure mechanisms in RF GaN HEMTs fabricated per our design. For the present study, we continued to investigate RF AlGaN-GaN HEMTs grown on SiC substrate with Ni-Pd-Au Schottky contacts. Our GaN HEMTs had a Schottky gate length of 250 nm, a total gate width of 6 × 150 μm periphery, and a field plate. Our HEMTs were irradiated with 50 MeV protons at the Lawrence Berkeley National Laboratory, with three different doses of 42, 160, and 889 krad(Si) for this experiment. All our irradiated devices were exposed to protons while they were shorted. First, pre- and post-irradiation DC I-V characteristics were compared, and DC bias-temperature stress tests were performed on unirradiated HEMTs. Some HEMTs were thermally stressed as monitor samples for comparison. Second, we employed focused ion beam (FIB) techniques to prepare TEM specimens from degraded devices for defect and chemical analysis using a high resolution TEM. AFM techniques were also employed to study gate pitting.
The layer-by-layer manufacturing approach utilized in additive manufacturing (AM) allows access to layers offering opportunities to embed technologies at each layer leading to 3D electronics, for example. Achieving this goal requires the coupling of multiple technologies including material extrusion 3D printing, machining, and robotic component placement & soldering. When exploited synergistically in this hybrid manufacturing (HM) approach, additional functionalities can be integrated in parts to produce multifunctional parts, or parts containing any additional functionality beyond rendering of basic shape. By combining additively manufactured dielectrics and nonconductive materials with conductors (wiring and electronics) via mechatronic equipment/tooling, the 3D printing process can be interrupted to embed and enclose sophisticated electronics within materials to produce electrically functional, end-use devices for custom and embedded sensing capability. To embed and connect electrical circuits, we developed methods for ultrasonic wire embedding and laser soldering. Laser soldering was studied to create joints on wire-wire and wirecomponent junctions. Of particular importance was the placement, spacing, and fixturing of 1608 components (1.6 × 0.8 mm) relative to adjacent wires in a butt joint configuration. Additionally, resistor-capacitor circuits were fabricated (i.e., embedded within printed polycarbonate material) in series and parallel. Both circuit variants were characterized via visual observations and impedance spectroscopy. The electrical test results demonstrated feasibility of the manufacturing approach, however, elevated failure rates of encapsulated circuitry warrant further investigation into process improvement.
GaN high electron mobility transistors (HEMTs) on SiC substrates are produced for both commercial and defense applications that require high voltage, high power, and high efficiency operation. Although leading GaN HEMT manufacturers have reported excellent RF power characteristics and encouraging reliability, long-term reliability in the space environment remains a major concern due to unknown degradation mechanisms. For the present study, we continued to investigate degraded RF GaN HEMTs using micro-analytical techniques. Our RF AlGaN-GaN devices grown on SiC substrate had a Ni-Pd-Au Schottky gate length of 0.25 μm, a total gate width of 6 × 150 μm periphery, and a field plate. First, we performed DC bias-temperature stress tests on GaN HEMTs and some GaN HEMTs were thermally stressed as control samples. Second, we employed focused ion beam (FIB) to prepare TEM cross sections from degraded and control devices for defect analysis using a high resolution TEM. Pits, cracks, and pockets of palladium were found at the edge of the drain side of the gate. We report our detailed analysis results including our understanding on the out-diffusion of Pd as a potential degradation mechanism in our RF GaN HEMTs.
GaN high electron mobility transistors (HEMTs) on SiC substrates are produced for both commercial and defense applications that require high voltage, high power, and high efficiency operation. Although leading GaN HEMT manufacturers have reported excellent RF power characteristics and encouraging reliability, long-term reliability in the space environment remains a major concern due to unknown degradation mechanisms. For the present study, we investigated stressed/degraded RF GaN HEMTs using micro-analytical techniques. Our RF AlGaN-GaN devices grown on SiC substrate had a Ni-Pd-Au Schottky gate length of 0.25 μm, a total gate width of 6 × 150 μm periphery, and a field plate. First, we performed DC bias-temperature stress tests on GaN HEMTs and some GaN HEMTs were thermally stressed as monitor samples. Second, we employed focused ion beam (FIB) to prepare TEM cross sections from degraded and monitor devices for defect analysis using a high resolution TEM. Defects containing highly Pd-enriched features were found at the edge of the drain side of the gate. We present our detailed analysis results including our understanding on the out-diffusion of Pd as a potential degradation mechanism in our RF devices.
Leading GaN HEMT manufacturers have reported excellent RF power characteristics and encouraging reliability. However, long-term reliability in the space environment still remains a major concern due to a number of defects and traps as well as unknown degradation mechanisms. Thus, careful study of reliability and radiation effects of GaN HEMTs should be performed before GaN HEMT technology based solid state power amplifiers (SSPAs) are successfully deployed in space satellite systems. We studied both RF GaN HEMTs fabricated per our design and commercial high-power GaN HEMTs, both grown on SiC substrates. Our RF devices had a nominal Ni-Au Schottky gate length of 0.25 μm, a total gate width of 6 × 150 μm periphery, and a field plate, while high-power devices had a Ni-Au Schottky gate length of 0.4 μm, a total gate width of 10 × 350 μm periphery, and a field plate. First, DC and RF characteristics of RF devices were compared before and after they were aged under different conditions (DC and temperature). Focused-ion-beam was employed to prepare TEM cross sections from degraded devices for defect analysis using a high-resolution TEM. Also, we performed strain analysis on pristine and degraded devices using TEM-based techniques. Second, DC characteristics of high-power devices were compared before and after they were irradiated with protons and heavy ions. Some of devices were exposed while they were unbiased, DC biased, and DC and RF biased.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.