Near-infrared micro-imaging will not only provide the sample’s spatial distribution information, but also the spectroscopic information of each pixel. In this thesis, it took the artificial sample of wheat flour and formaldehyde sodium sulfoxylate distribution given for example to research the data processing method for enhancing the quality of near-infrared micro-imaging. Near-infrared spectroscopic feature of wheat flour and formaldehyde sodium sulfoxylate being studied on, compare correlation imaging and 2nd derivative imaging were applied in the imaging processing of the near-infrared micro-image of the artificial sample. Furthermore, the two methods were combined, i.e. 2nd derivative compare correlation imaging was acquired. The result indicated that the difference of the correlation coefficients between the two substances, i.e. wheat flour and formaldehyde sodium sulfoxylate, and the reference spectrum has been increased from 0.001 in compare correlation image to 0.796 in 2nd derivative compare correlation image respectively, which enhances the imaging quality efficiently. This study will, to some extent, be of important reference significance to near-infrared micro-imaging method research of agricultural products and foods.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.