KEYWORDS: Line edge roughness, Scanning electron microscopy, Denoising, Signal to noise ratio, Image processing, Data modeling, Image denoising, Edge detection, Interference (communication), Image filtering
Deep Learning (DL) techniques based on Denoising Convolutional Neural Networks (DeCNN) are applied in the denoising of SEM images of line patterns to contribute to noise-reduced (unbiased) LER nanometrology. The models of DeCNN are trained in a sufficiently large set of synthesized SEM images with controlled Gaussian and Poisson noise level. Due to the image-based nature of the DL approach, it can be combined sequentially with the state of the art PSD-based method especially for highly noisy images where the use of the PSD-based method alone fails. The results for test synthesized images show the high predicting capability of the DL assisted method for the commonly used LER parameters and functions (Rms, ξ, α, PSD) of the true (zero-noise) values revealing its potential for future use toward an unbiased LER metrology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.