Laser induced damage of optical components is often a limiting factor for the development of high power lasers. Indeed,
for many years, organic contamination is identified as a factor decreasing the laser induced damage threshold of optical
surfaces, limiting the use of high fluencies. Also, for the development of its laser facilities, Laser MégaJoule and
PETawatt Aquitaine Laser, the Commissariat à l’Energie Atomique et aux Energies Alternatives investigates the
influence of organic contamination on the performances of the optical components. Actually, although great care is
provided on the cleanliness of the optics, organic volatile compounds outgassed from surrounding materials can be
adsorbed by the sensitive surfaces during its timelife. Thus, for this study, performances of clean and contaminated
multilayer dielectric mirrors are compared. Contamination is intentionally realized either by controlled protocols or by
exposing optics inside the laser facilities. Qualification and quantification of the organic contamination is realized by
automated thermal desorption and gas chromatography coupled with mass spectrometry. Laser induced damage
threshold of clean and contaminated mirrors are then investigated by 1053 nm laser at 670 fs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.