Novel imaging methods permitting real-time, wide-field and quantitative optical mapping of biological tissue properties offer an unprecedented range of potential new applications for clinical use such as guided surgery or patient monitoring. However, significant technical challenges have so far prevented such tools from performing in real-time (for both acquisition and processing) and therefore from being deployed in clinical practice. To overcome these limitations, recent research introduced methods based on Spatial Frequency Domain Imaging (SFDI) that allow real-time (within milliseconds) wide-field imaging of optical properties. In this study we present a novel implementation of general purpose graphic processing unit (GPGPU) direct programming in C CUDA (Compute Unified Device Architecture) for real-time, wide-field and quantitative multispectral imaging using our recently-developed spatio-temporal modulation of light imaging method. Using this new method, we are able to quantitatively obtain optical properties images (1 megapixel) at 2 wavelengths (665 nm and 860 nm) in only 1.52 ms with at most 1% error in comparison with standard Matlab processing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.