All the High Energy Physics (HEP) experiments in modern accelerators can be seen as real-time imaging devices whose main target is the reconstruction of the trajectories of the particles generated directly in the beam interactions - e.g. interaction between proton-proton beams in the Large Hadron collider (LHC) at CERN – or in the decay of other particles. Silicon imaging sensors are segmented in pixel arrays (50 μm x 50 μm) and they are bonded to custom Front-End (FE) ASICs. The data rate generated amounts to hundreds of Gbps for each FE ASIC. Similar scenario characterized the array of detectors in nuclear medicine systems such as PET (Positron Emission Tomography) scanners. Within this scenario, the paper presents the L1-trigger processor, which acts as an image compression processor with a compression factor 40:1. The paper also presents the silicon photonic Mach Zehnder Modulator with the relevant high-speed driver to transfer the multi-Gbps data rate with a tolerance to radiation damage up to 1 Grad.
This work proposes a universal and inductorless DC/DC converter that can be used for a wide input range, from few V to 60 V, to regulate output voltages from 5 V down to 1 V in Sensor and Actuator Network nodes. The proposed converter has been developed within the Athenis3D European project. It is composed by a cascade of multiple switching capacitor stages, with a proper skip-mode control to implement both step-down and step-up converting ratios, thus regulating all input sources to a voltage of about 6 V. These switching stages are further cascaded with linear regulators, which can provide stable output voltages down to 1 V. The multi-output regulator has been realized as a single-chip in a low-cost 0.35 μm CMOS technology. It is available as a naked die or in a ceramic package. The only needed external components are surface mount capacitors, which can be integrated on top of the naked chip die, creating a 3D structure, using trench capacitors embedded in a passive interposing layer. This way the size of the power management unit is further minimized. An advantage of the proposed converter is that it isn’t optimized for a particular input voltage, therefore it can be used with no constant input power, like power harvesting systems (e.g. solar cells, wind and water turbines) and very disturbed power supplies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.