Flexible photonic devices based on metasurfaces exhibit characteristics such as ultra-thinness and light weight, enabling versatile applications across various surfaces, particularly in smart wearable devices, visible light communication, and conformal optics, etc. Among existing methods, direct flip transfer and stamp-assisted transfer are the two most prevalent processes. However, metasurfaces produced by these methods are typically embedded within a flexible substrate, constraining the dielectric environment of the metasurface. Moreover, conventional approaches often utilize materials like metal or amorphous silicon for nanoantennas, leading to unnecessary optical losses. In contrast, monocrystalline silicon offers a larger scattering cross-section and lower absorption loss, promising superior performance for photonic devices. Herein, we propose a method for fabricating reconfigurable, flexible centimeter-scale monocrystalline silicon metasurfaces. The process involves a polymer membrane containing monocrystalline silicon metasurface, followed by transferring the polymer onto a stretchable substrate (PDMS) utilizing water tension. The monocrystalline silicon nanoparticle arrays are affixed to the PDMS substrate via van der Waals force, with the surrounding area directly exposed to air. Further, photonic devices with upper and lower refractive index matching can be achieved by pouring PDMS. By adjusting the mechanical stretching of the photonic device, dynamic control of the light field can be realized.
We propose and demonstrate a low-cost single-pixel terahertz imaging method based on near-field photomodulation and compressed sensing. By using monolayer graphene on a silicon substrate as the photomodulator, and a low-cost continuous-wave laser and digital micromirror device for effective patterned photomodulation, we achieve fast single-pixel terahertz imaging based on the compressed sensing algorithm. We further show that adopting a graphene on silicon substrate leads to deeper modulation depth and thus better image quality than a high-resistance silicon substrate. We expect this work will advance the development of low-cost single-pixel terahertz imaging and promote this technique into practical applications.
Here we report a tunable polarization-independent broadband absorber in the terahertz regime. The proposed structure consists of periodic all-dielectric array on a gold substrate, sandwiched by a monolayer graphene and an epsilon-near-zero layer. Simulation results show that the absorption that is independent from the incident polarization remains above 90% over a broadband spectral range from 1.6 THz to 4.1 THz, corresponding to a bandwidth of 2.5 THz and a relative bandwidth of 87.7%. By varying the graphenes Fermi energy from 0.2 eV to 0.5 eV, the absorption bandwidth can be turned from 1.5 THz to 2.5 THz. We expect this polarization- independent absorber with dynamically tunable bandwidth can be used a filters in applications such as terahertz detectors.
Here, we propose an effective classification strategy for THz pulsed signals of breast tissues based on wavelet packet energy (WPE) feature exaction and machine learning classifiers. The parafin-embedded breast tissue samples were adopted in this study and identified as tumor (226 samples), healthy fibrous tissue (233 samples) or adipose tissue (178 samples) based on the histological results. Firstly, the THz pulsed signals of tissue samples were acquired using a standard transmission THz time-domain spectrometer. Then, the signals were decomposed by the wavelet packet transform (WPT) and the features of the WPE were extracted. To reduce the dimensionality of extracted features, the principal components analysis (PCA) method was employed. Six different machine learning classifiers were then performed and compared for automatic classification of different tissue samples. The highest classification accuracy is up to 97% using the fine Gaussian support vector machine (SVM) approach. The results indicate that the WPE feature exaction combined with machine learning classifier can be used for automatic evaluation of biological tissue THz signals with good accuracy.
We propose a novel type of bowtie terahertz antenna based on hyperbolic metamaterials that are composed of multilayers of Indium Antimonide (InSb) and SiO2. The InSb-SiO2 multilayers have hyperbolic dispersion at terahertz frequency range. Compared with the conventional bowtie antenna composed of gold, fully-vectorial simulations show that, the localized field enhancement in the proposed structure is 16 times of that for the gold antenna. We further reveal that this great field enhancement attributes to the significantly enhanced out-of-plane electric field component in the hyperbolic metamaterial antenna. We expect this work will find applications in terahertz sensors, detectors, and nonlinear devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.