Double cascading energy level alignment is achieved in bulk heterojunction organic solar cells ensuring efficient carrier splitting and transport. This affords unique advantages in optimizing light absorption, exciton splitting, carrier transport, and charge transfer state energy levels in quaternary blends. Solar cell device power conversion efficiency up to 17.40%, the highest in single layered devices, was achieved. The optimization of the electronic structure and morphology resulted in a simultaneous improvement of the open circuit voltage, short circuit current and fill factor. The proper ancillary donor/acceptor material choice provides useful handles in thin film. Control of the electronic structure and charge transfer state energy level is achieved with the choice of donor and acceptor materials, allowing the manipulation of the hole-transfer rates, carrier transport, and non-radiative recombination losses. A detailed structure-property relationship that best manifests the impo
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.