Nowadays, optical and radar remote sensing data are increasingly used for land-cover/vegetation mapping and monitoring. Their technical capabilities and tools are improving all the time and provide more accurate results. By the recent arrival of the Sentinel-1 and Sentinel-2 series, available free, processing and methods of analysis must be increased more and more in the field of cartography. This paper aims to present vegetation mapping method in the Pays de Brest area by using a time series stacking of Sentinel-1, Sentinel-2 and SPOT-6 satellites data using the algorithm Random Forest supervised classification. The types of vegetation mapping in first time are those belonging to the major vegetation types, but especially those that can be observed on the processed images that are the Sentinel-1, Sentinel-2 series and SPOT-6. The types of classes considered for this study are: no vegetation, forest and undergrowth, moors and lawns, summer crops, winter crops, grassland and water. Several time series stacking has been made on that series containing 140 images radar representing different dates (2017) and the best combination method is to use both the two polarizations VV and VH to the calculation of the matrix of confusion. On the other hand, combinations of SAR images with different vegetation indices (NDVI, NDWI, S2rep, IRECI) calculated from the Images Sentinel-2 have been made. The series of times series stacking ends with combinations between SPOT-6 and Sentinel-1. The times series stacking Sentinel-1, Sentinel-2 and SPOT-6 are satisfactory, with an overall accuracy that reaches 93%. Such precision is very good for data that are available free.
This paper presents a methodology for monitoring vegetation in the Pays de Brest using new series of
Sentinel-1 satellite images combining with Sentinel-2 and SPOT-6. This work consists of establishing an
interferogram method of the main types of vegetation in order to achieve the coherence of a multi-temporal
Sentinel-1 radar image series, in SLC format (C band, VV and VH polarization), between 2015 and 2016. We
then proceed to calculating the radar backscatter coefficient based on Sentinel 1 images in GRD format.
Multi-date and multipolarized color compositions will be made to detect changes. It also shows the
importance of data synergy to obtain an excellent accuracy using Random Forest classification.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.