A simple and general approach for implementing all-fiber high-order optical temporal differentiator based on twin-core fiber (TCF) is presented and demonstrated. Specifically, the core 2 (or core 1) of the TCF should be cut in N sections with the same length for achieving N ’th-order optical temporal differentiator, which can be considered to consist of N cascaded first-order optical temporal differentiators based on TCF. Our simulations show that the proposed approach can provide optical operation bandwidths in the several THz regime, which is capable of accurately processing time features as short as subpicoseconds. Performance analysis results show a good accuracy calculating the high-order time differentiation of the optical signal launched at core 2 (or core 1).
A prototype of a 160 GHz millimeter-wave (mm-wave) generator is proposed and analyzed. In the scheme, two lasers with 100 GHz frequency interval serve as sources. Then, a frequency 16-tupling feed-forward modulation technique is employed to generate two-phase correlated sidebands with a 160 GHz interval. The desired sidebands can be selected by using optical interleavers. A 160 GHz mm-wave signal free of phase noise can be achieved.
Twin-core fiber (TCF) can provide the required spectral response for implementing an optical temporal differentiator. It is shown that the output temporal waveform from one core of the TCF providing full energy coupling is proportional to the first derivative of the optical temporal signal launched at the input. Moreover, TCF can also be used as the first order optical temporal differentiator for multiwavelength optical signals, in which the position and the number of central wavelength can be tunable simply by changing the fiber length. Our numerical results confirmed that the TCF has a good accuracy by calculating the first time derivatives of the input optical signals with temporal features in the picosecond and subpicosecond ranges.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.