This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Ground-based general purpose Doppler-lidar: a technology for Doppler-aerosol measurements and beyond
The spectral and energetic suitability of a first laser was demonstrated in hundreds of operating hours and, with a novel mobile lidar system, by the first measurements in the atmosphere by means of a diode-pumped Alexandrite laser, yielding data from the stratosphere to the mesosphere.
An improved laser yields a pulse energy of 1.7 mJ at a repetition rate of 500 Hz with an excellent beam quality of M2 < 1.1. By seeding the resonator with a narrow-band diode laser, SLM operation with a linewidth below 4 MHz is achieved. The electro-optical efficiency of 2 % is the highest archived for all Alexandrite lasers in SLM operation and reasonable for space-operation.
The performance analysis as well as benchmarking with the space-qualified mounting technology point out the TRL and the remaining effort of development of the technology.
Laserline GmbH and Fraunhofer Institute for Laser Technology joined their forces1 to upgrade standard high power laser sources for short-pulsed operation exceeding 1 kW of average power. Therefor a compact, modular qswitch has been developed.
In this paper the implementation of a polarization independent q-switch into an off-the-shelf multi-kilowatt diodepumped continuous wave fiber source is shown. In this early step of implementation we demonstrated more than 1000 W of average power at pulse lengths below 50 ns FWHM and 7.5 mJ pulse energy. The M2 corresponds to 9.5. Reliability of the system is demonstrated based on measurements including temperature and stability records. We investigated the variation possibilities concerning pulse parameters and shape as well as upcoming challenges in power up-scaling.
By using this design instead of a fiber MOPA setup, a cost-effective and less complex system could be implemented.
The oscillator rod is longitudinally pumped from both sides. The oscillator has been operated with three cavity control methods: "Cavity Dither", "Pound-Drever-Hall" and "Adaptive Ramp & Fire". Especially the latter method is very suitable to operate the laser in harsh vibrating environment such in airplanes.
The amplifier bases on the InnoSlab design concept. The constant keeping of a moderate fluence in the InnoSlab crystal permits excellent possibilities to scale the pulse energy to several 100 mJ. An innovative pump unit and optics makes the laser performance insensitive to inhomogeneous diode degradation and allows switching of additional redundant diodes.
Further key features have been implemented in a FM design concept. The operational lifetime is extended by the implementation of internal redundancies for the most critical parts. The reliability is increased due to the higher margin onto the laser induced damage threshold by a pressurized housing. Additionally air-to-vacuum effects becomes obsolete. A high efficient heat removal concept has been implemented.
These LIDAR instruments require a pulsed single frequency laser source with emission at a specific wavelength. Pulse energies in the 10 mJ or 100 mJ range are required at bandwidth limited pulse durations in the multi-10 ns range. Pulse repetition rate requirements are typically around 100 Hz but may range from 10 Hz to some kHz. High efficiency is mandatory.
Building complex laser sources providing the performance, reliability and lifetime necessary to operate such instruments in space has been recognized to be still very challenging.
To overcome this, in the frame of the FULAS technology development project - funded by ESA and supported by the German Aerospace Center DLR - a versatile platform for LIDAR sources has been developed. For demonstration the requirements of the laser source in the ATLID instrument have been chosen.
The design is based on a single frequency seeded, actively Q-switched, diode pumped Nd:YAG laser oscillator and an InnoSlab power amplifier with frequency tripling. The laser architecture pays special attention on Laser Induced Contamination by avoiding critical organic and outgassing materials. Soldering technologies for mounting and alignment of optics provide high mechanical stability and superior reliability.
The FULAS infrared section has been assembled and integrated into a pressurized housing. The optical performance at 1064 nm has been demonstrated and thermal vacuum tests have been carried out successfully providing relevant data for the French-German climate mission MERLIN.
We will discuss technical implementation and characterization of different optical parametric generators (OPG) based on periodically poled Lithium Niobate (PPLN) to show the parameter flexibility of this approach as well as current technical limits. Actual design examples will address output wavelengths between 1.6 μm and 3.4 μm with output powers ranging from several watts to tens of watts. The pulse parameters of these lasers range from a pulse duration of 9 ps with a repetition rate of 86 MHz to 1.5 ns and 100 kHz.
The spectral bandwidth of the OPG examined can be very large. In particular, spectral bandwidths of about 100 nm are measured at the degenerated point, where the output wavelength is equal to twice the pump wavelength. Even beyond this point, a spectrum of typically a few tens of nanometers width generally accompanies a large conversion efficiency (>50 %). For applications that require a narrower spectrum, the OPG can be operated in a seeded mode, where only a few milliwatts of power from a continuously emitting laser diode are sufficient to seed a pulsed high power OPG efficiently and reduce the bandwidth to few nanometers.
An OPO/OPA frequency conversion setup was designed and built as a demonstration module to address the 1.6 μm range. The pump laser is an Nd:YAG-MOPA system, consisting of a stable oscillator and two subsequent Innoslab-based amplifier stages that deliver up to 500 mJ of output pulse energy at 100 Hz repetition frequency. The OPO is inherited from the OPO design for the CH4 lidar instrument on the French-German climate satellite MERLIN. In order to address the 100 mJ regime, the OPO output beam is amplified in a subsequent multistage OPA. With KTP as nonlinear medium, the OPO/OPA delivered more than 100 mJ of output energy at 1645 nm from 450 mJ of the pump energy and a pump pulse duration of 30 ns. This corresponds to a quantum conversion efficiency of about 25 %.
Besides demonstrating optical performance for future lidar systems, this laser will be part of a LIDT test facility, which will be used to qualify optical components especially for the MERLIN mission.
High efficient difference frequency generation of tunable visible light in a self-controlled process
View contact details
No SPIE Account? Create one