The ARCSTONE project objective is to acquire accurate measurements of the spectral lunar reflectance from space, allowing the Moon to be used as a high-accuracy SI-traceable calibration reference by spaceborne sensors in low-Earth and geostationary orbits. The required spectral range is 350 to 2300 nm with 4-nm sampling. The ARCSTONE approach is to measure solar and lunar spectral irradiances with a single set of optics and determine spectrally resolved lunar reflectances via a direct ratioing method, eliminating long-term optical degradation effects. Lunar-irradiance values, derived from these direct reflectance measurements, are enabled by independently measured SI-traceable spectral solar irradiances, essentially using the Sun as an on-orbit calibration reference. In an initial attempt to demonstrate this approach, a prototype ultraviolet-visible-near infrared (348 to 910 nm) instrument was designed, fully assembled, characterized, and field tested. Our results demonstrate that this prototype ARCSTONE instrument provides a dynamic range larger than 106, which is necessary to directly measure both the solar and lunar signals, and suggest uncertainties better than 0.5% (k = 1) in measuring lunar spectra can be achieved under proper operational scenarios. We present the design, characterization, and proof-of-concept field-test of the ARCSTONE instrument prototype.
The Arcstone instrument uses a single optical pathway to obtain Lunar spectral reflectance from a ratio of Solar and Lunar spectral signals. An analysis of design features that minimize spectral linewidth is presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.