We present results of CCD radiation testing for a proposed Jovian mission. Samples of two candidate star tracker CCDs were irradiated with 10-MeV and 50-MeV electrons at Rensselaer Polytechnic Institute's Gaerttner LINAC. Differences in displacement damage effects on CCD parameters and star tracker performance are discussed for these two energies. Dark current, charge transfer efficiency (CTE), hot pixels, and flat-band voltage shifts are examined. Our electron data is compared to proton irradiation data taken by other experimenters. 10-MeV electron-induced transient data are also discussed.
The wide variety of optoelectronics applications in NASA flight systems and instruments require that optoelectronic technologies meet the demanding requirements of the space environment throughout mission life. These requirements vary widely from intense radiation near Jupiter to the very cold temperatures on the Martian surface to the effects of solar flares in Earth orbit. Considerable work has been performed under the NEPP Program to meet these assurance needs and minimize the risk of insertion of optoelectronics in NASA systems. In this paper we provide recent examples of this work for a variety of NASA mission applications that employ various optoelectronic devices.
A compact microchip laser pumped by a single fiber-coupled semiconductor diode laser is developed for a space-borne scanning laser radar instrument. A commercial off-the-shelf component is used for the pump laser and undergoes a rigorous qualification approach to meet the requirements for the space-borne application. The qualification and testing process for the commercial pump laser is derived based on a nonstandard piece part screening plan and is presented along with the test results. These tests include mechanical, vibration, thermal cycling, and radiation tests as well as a full destructive parts analysis. Accelerated lifetests are also performed on the packaged device to demonstrate the ability to meet an operational lifetime of 5000 h. The environmental testing approach would be applicable to space qualification of a variety of commercial photonic systems, particularly in cost-constrained missions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.