Sampling rates of high-performance electronic analog-to-digital converters (ADC) are fundamentally limited by the timing jitter of the electronic clock. This limit is overcome in photonic ADC's by taking advantage of the ultra-low timing jitter of femtosecond lasers. We have developed designs and strategies for a photonic ADC that is capable of 40 GSa/s at a resolution of 8 bits. This system requires a femtosecond laser with a repetition rate of 2 GHz and timing jitter less than 20 fs. In addition to a femtosecond laser this system calls for the integration of a number of photonic components including: a broadband modulator, optical filter banks, and photodetectors. Using silicon-on-insulator (SOI) as the platform we have fabricated these individual components. The silicon optical modulator is based on a Mach-Zehnder interferometer architecture and achieves a VπL of 2 Vcm. The filter banks comprise 40 second-order microring-resonator filters with a channel spacing of 80 GHz. For the photodetectors we are exploring ion-bombarded silicon waveguide detectors and germanium films epitaxially grown on silicon utilizing a process that minimizes the defect density.
Microphotonic devices employing strong confinement of light are of growing importance for key applications such as
telecommunication and optical interconnects. They have unique and desirable characteristics but their extreme
sensitivity to dimensional variations makes them difficult to successfully implement. Here, we discuss strategies towards
the successful realization of strong confinement devices. We leverage what planar fabrication technology does best:
replicating structures. Although the absolute dimensional control required for successful fabrication of many strong
confinement devices is all but impossible to achieve, we show that surprisingly-high relative dimensional accuracy can
be obtained on structures in proximity of one another on a wafer. This provides an advantage to schemes that are based
on multiple copies of low-complexity structures. These copies can be made nearly identical or with precise relative-dimensional
offsets to achieve the desired function. We quantify the achievable relative dimensional control and discuss
the first demonstration of multistage filters, integrated polarization diversity, and high-order microring-filter banks.
Photonic Analog-to-Digital Conversion (ADC) has a long history. The premise is that the superior noise performance of
femtosecond lasers working at optical frequencies enables us to overcome the bottleneck set by jitter and bandwidth of
electronic systems and components. We discuss and demonstrate strategies and devices that enable the implementation
of photonic ADC systems with emerging electronic-photonic integrated circuits based on silicon photonics. Devices
include 2-GHz repetition rate low noise femtosecond fiber lasers, Si-Modulators with up to 20 GHz modulation speed,
20 channel SiN-filter banks, and Ge-photodetectors. Results towards a 40GSa/sec sampling system with 8bits resolution
are presented.
Photonic circuits based on silicon wire waveguides have attracted significant interest in recent years. They allow strong
confinement of light with moderately low propagation losses. Moreover, the high thermo-optical coefficient of silicon
and the small device size in silicon photonics allow for micro-heaters induced trimming, tuning, and switching with
relatively low power. In this paper, we review our recent progress towards telecom-grade reconfigurable optical add-drop
multiplexers (ROADMs) based on silicon microring resonators. We discuss waveguide and micro-heater design
and fabrication as well as the first demonstration of telecom-grade silicon-microring filters and the first demonstration of
transparent wavelength switching. The reported devices can be employed in numerous optical interconnect schemes.
Advances in femtosecond lasers and laser stabilization have led to the development of sources of ultrafast optical pulse
trains that show jitter on the level of a few femtoseconds over tens of milliseconds and over seconds if referenced to
atomic frequency standards. These low jitter sources can be used to perform opto-electronic analog to digital conversion
that overcomes the bottleneck set by electronic jitter when using purely electronic sampling circuits and techniques.
Electronic Photonic Integrated Circuits (EPICs) may enable in the near future to integrate such an opto-electronic
analog-to-digital converters (ADCs) completely. This presentation will give an overview of integrated optical devices
such as low jitter lasers, electro-optical modulators, Si-based filter banks, and high-speed Si-photodetectors that are
compatible with standard CMOS processing and which are necessary for the implementation of EPIC-chips for advanced
opto-electronic ADCs.
Progress in developing high speed ADC's occurs rather slowly - at a resolution increase of 1.8 bits per decade. This slow progress is mostly caused by the inherent jitter in electronic sampling - currently on the order of 250 femtoseconds in the most advanced CMOS circuitry. Advances in femtosecond lasers and laser stabilization have led to the development of sources of ultrafast optical pulse trains that show jitter on the level of a few femtoseconds over the time spans of typical sampling windows and can be made even smaller. The MIT-GHOST (GigaHertz High Resolution Optical Sampling Technology) Project funded under DARPA's Electronic Photonic Integrated Circuit (EPIC) Program is trying to harness the low noise properties of femtosecond laser sources to overcome the electronic bottleneck inherently present in pure electronic sampling systems. Within this program researchers from MIT Lincoln Laboratory and MIT Campus develop integrated optical components and optically enhanced electronic sampling circuits that enable the fabrication of an electronic-photonic A/D converter chip that surpasses currently available technology in speed and resolution and opens up a technology development roadmap for ADC's. This talk will give an overview on the planned activities within this program and the current status on some key devices such as wavelength-tunable filter banks, high-speed modulators, Ge photodetectors, miniature femtosecond-pulse lasers and advanced sampling techniques that are compatible with standard CMOS processing.
The role of lithography in the future of nanoscale science and engineering is to put high-density spatial information into nanoscale assemblies. Because information content determines the functionality of such assemblies, lithography will be a key enabler. Conventional lithographic techniques generally lack the flexibility, low cost and the resolution that research in nanoscale science and engineering requires. Although no single lithographic technique is likely to be a panacea, it is important to seek novel approaches that meet the needs of researchers, and open a path to directly manipulating nanoparticles and macromolecules. We review the various forms of lithography and focus special attention on maskless zone-plate-array lithography, assessing its impact, advantages and extendibility to the limits of the lithographic process.
Nanoscale assemblies will require control at the macromolecular level, and this has begun with research on templated self assembly. Going beyond that to the control and utilization of the information content of nanoparticles and molecules will require innovations whose origin is uncertain at this point.
Supercontinuum based sources and measurement techniques are developed, enabling optical ultra-broadband studies of nano-scale photonic crystal devices and integrated photonic circuits over 1.2 - 2.0 micron wavelength range. Experiments involving 1-D periodic photonic crystal microcavity waveguides and 3-D periodic photonic crystals with embedded point defects are described. Experimental findings are compared with rigorous electromagnetic simulations.
Nanostructured Origami 3D Fabrication and Assembly Process is a method of manufacturing 3D nanostructured devices using exclusively 2D micro- and nanofabrication techniques. The origami approach consists of first patterning a large 2D membrane and then folding the membrane along predefined regions to obtain the final 3D configuration. We report on the materials, actuation, and modeling aspects of building an origami structure. Experimental results from fabricated devices as well as future applications of the technique are also presented.
Zone-Plate-Array Lithography (ZPAL) is an optical-maskless-lithography technique, in which an array of tightly focused spots is formed on the surface of a substrate by means of an array of high-numerical-aperture zone plates. The substrate is scanned while an upstream spatial-light modulator, enabling "dot-matrix" style writing, modulates the light intensity in each spot. We have built a proof-of-concept system using an array of zone plates, and the Silicon Light Machines Grating Light Valve (GLVTM) as the light modulator. We have demonstrated fully multiplexed writing, multilevel alignment and resolution corresponding to k1 < 0.3. This system currently operates at l = 400nm and utilizes well-known I-line processes. Diffractive optics such as zone plates offer significant advantages over refractive approaches since near-ideal performance is achieved on axis, reliable planar fabrication techniques are used, costs are low, and the approach can be readily scaled to shorter wavelengths. In this paper, we also developed models and analyzed the cost-of-ownership of maskless lithography (ZPAL) versus that for optical-projection lithography (OPL). In this context, we propose the use of an effective throughput to consider the photomask delivery times in the case of OPL. We believe that ZPAL has the potential to become the most practical and cost-effective method of maskless lithography, enabling circuit designers to fully exploit their creativity, unencumbered by the constraints of mask-based lithography. This may revolutionize custom circuit design as well as research in electronics, NEMS, microphotonics, nanomagnetics and nanoscale science and engineering.
The semiconductor industry has been driven by significant improvements in optical-lithographic capability. As feature sizes on the wafer shrink faster than the wavelength of the exposing illumination, increasingly complex and expensive steps such as immersion, resolution-enhancement techniques, and optical-proximity correction (OPC) are required. Traditionally, high costs have been amortized over large volumes of chips, and by progressive technological maturity. Optical lithography using MEMs-based spatial-light modulators provides an alternative means of lithography. Significantly lower costs-of-ownership coupled with throughputs acceptable for mask manufacturing, mask prototyping, and low-volume-chip manufacturing are the enabling attributes of such techniques. At MIT, we have pursued a unique version of this technology, which we call Zone-Plate-Array Lithography (ZPAL). In ZPAL, an array of high-numerical-aperture diffractive lenses (for example, zone plates) is used to create an array of tightly focused spots on the surface of a photoresist-coated substrate. Light directed to each zone plate is modulated in intensity by one pixel on an upstream spatial-light modulator. The substrate is scanned, and patterns of arbitrary geometry are written in a “dot-matrix” fashion. In this paper, we describe results from our proof-of-concept ZPAL system and its future potential. Lithography using distributed, tightly focused spots presents a different set of advantages and challenges compared to traditional optical-projection lithography. We discuss some of these issues and how they bear on practical system designs.
Nanostructured OrigamiTM 3D Fabrication and Assembly Process is a
method of manufacturing 3D nanosystems using exclusively 2D litho tools. The 3D structure is obtained by folding a nanopatterned 2D substrate. We report on the materials, actuation, and modeling aspects of the manufacturing process, and present experimental results from fabricated structures.
Ever-increasing demands of smaller feature sizes and larger throughputs have catapulted the semicondutor lithography juggernaut to develop immensely complex and expensive systems. However, it is not clear if the lithography needs for microoptic and other “botique” device fabrication are being addressed. ZPAL is a new nanolithography technique which leverages advances in micromechanics and diffractive optics technologies. We present ZPAL as the ideal system for such non-conventional lithography needs.
The nascent nanotechnology revolution promises many benefits to humankind. An exciting and sometimes bewildering variety of new nanofabrication technologies and nanodevices based on electrical, optical, magnetic, mechanical, chemical and biological effects are reported almost daily. It is prudent to ask, however, how many of these breakthroughs will remain laboratory curiosities and how many will proceed to widespread industrialization. We argue that a metrology infrastructure has underpinned all industrial revolutions, and that this infrastructure is weak or nonexistent for many of the proposed nanosystems. More attention needs to be paid to metrology or progress will be derailed in a number of areas.
Celestino Gaeta, Harry Rieger, I. C. Edmond Turcu, Richard Forber, Kelly Cassidy, S. Campeau, Michael Powers, J. Maldonado, James Morris, Richard Foster, Henry Smith, M. Lim
A compact x-ray source radiates 24 Watts average power of 1nm x-rays in 2 (pi) steradians. The laser produced plasma x-ray source has a 300 W laser driver which is a compact, diode-pumped solid-state Nd:YAG laser system. The x-ray conversion efficiency is 9 percent of the laser power delivered on target. The x-ray source was used to demonstrate x-ray lithography of 75 nm lines. The x-ray source is optimized for integration with a x-ray stepper to provide a complete x-ray lithography exposure tool for the manufacture of high-speed GaAs devices.
This paper presents soft-contact x-ray lithography exposure results at sub-40 nm length scales and shows that the process latitude for such exposures is extremely wide. For feature sizes as large as 70 nm and as small as 30 nm in PMMA resist, no statistically significant difference in printed linewidth is seen for development times up to 50 percent greater than the time required for clearing of features. Within this 50 percent development window, dense features as small as 45 nm and isolated features as small as 30 nm are within a +/- 10 percent CD variation.
This paper reviews recent progress in our development of a new maskless lithography scheme which utilizes an array of Fresnel zone plates to write arbitrary patterns on a wafer. Maskless, zone-plate-array lithography (ZPAL) should be capable of producing 25 nm feature sizes at a throughput of 1 cm2/second using 4.5 nm radiation form an undulator on a compact synchrotron. This wavelength will allow a large depth-of-focus with essentially no proximity effect at a large gap between the zone-plate array and the substrate. We present a detailed ZPAL system design, and show calculations and simulations which address issues of resolution, contrast, throughput, source characteristics, and micromechanical modulation schemes for x-ray beamlets in ZPAL. We review our experimental efforts in ZPAL in the x- ray and UV regions.
The High Energy Transmission Grating spectrometer (HETG) on the Advanced X-ray Astrophysics Facility (AXAF) requires the fabrication and assembly of hundreds of large area (approximately equals 6 cm2), low-distortion, ultra-fine-period transmission gratings efficient in the 0.4-10 keV band ((lambda) equals 1.2-30 angstroms). The spectrometer requires two types of gratings: Medium Energy Gratings (MEG), which have a period of 0.4 micrometers and consist of gold bars 0.4 micrometers thick, and High Energy Gratings (HEG), which have a period of 0.2 micrometers and consist of gold bars 0.7 micrometers thick. Both types are supported by 0.5-1.0 micrometers -thick polyimide membranes. The gratings are fabricated using a variety of techniques including interference lithography, tri-level resist processing, reactive-ion etching, and gold microplating. An earlier approach which utilized x-ray lithography has been abandoned. Recent efforts have focussed on improving the yield and robustness of the many complicated fabrication steps, and improving the profile of the grating bars. We present details of the fabrication procedure and discuss the issues associated with developing an optimal fabrication process.
A new paradigm for writing long-range, spatially-coherent multiple-quarter-wave shifted Bragg gratings is described. The implementation of such a paradigm is essential for fabricating integrated optical devices for wavelength-division multiplexed applications.
The manufacture of state-of-the-art integrated circuits uses UV optical projection lithography. Conventional wisdom (i.e., the trade journals) holds that this technology will take the industry to quarter-micrometer minimum features sizes and below. So, why bother with X-ray lithography? The reason is that lithography is a 'system problem', and proximity X-ray lithography is better matched to that system problem than any other technology, once the initial investment is surmounted. X-ray lithography offers the most cost-effective path to the future of ultra-large-scale integrated circuits with feature sizes of tenth micrometer and below (i.e., gigascale electronics and quantum-effect electronics).
The use of transmission gratings with grazing-incidence telescopes in celestial x-ray astronomy is reviewed. The basic properties of transmission grating spectrometers and the use of "phased" gratings to enhance the diffraction efficiency are outlined. Special attention is given to the AXAF high-energy transmission grating (HETG) being fabricated at MIT. The HETG operates over the range 0.4 to 8 keV, gives resolving powers of 100 to 1000, effective areas of 10 to 300 cm2, and a minimum detectable line flux of 1 to 10 x 10-6 photons cm-2 s-1. The instrument consists of a single array with two types of membrane-supported grating facets: medium-energy gratings (0.6-μm period, 0.5-μm-thick silver) mounted behind the outer three AXAF mirrors, and high-energy gratings (0.2-μm period, 1.0-μm-thick gold) mounted behind the inner three mirrors. The materials and thicknesses are selected to maximize efficiency throughout the energy band. The facets are fabricated at MIT using a process involving x-ray lithography. AXAF will also carry a low-energy transmission grating (LETG) supplied by the Laboratory for Space Research at Utrecht. It uses mesh-supported grating facets of 1.0-μm period and is optimized for operation down to 80 eV. Gratings are most effective for the study of point sources, but they also give moderate resolution spectra of slightly extended sources and can be used to map the spatial distribution of line-emitting regions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.