Optical lithography is facing resolution limit. To overcome this issue, highly complicated patterns with high data volume
are being adopted for optical mask fabrications. With this background, new electron beam mask writing system, EBM-
7000 is developed to satisfy requirements of hp 32nm generation. Electron optical system with low aberrations is
developed to resolve finer patterns like 30nm L/S. In addition, high current density of 200 A/cm2 is realized to avoid
writing time increase. In data path, distributed processing system is newly built to handle large amounts of data
efficiently. The data processing speed of 500MB/s, fast enough to process all the necessary data within exposure time in
parallel for hp32nm generation, is achieved. And this also makes it possible to handle such large volume dense data as
2G shots/mm2 local pattern density.
In this paper, system configuration of EBM-7000 with accuracy data obtained are presented.
The impending need of double patterning/double exposure techniques is accelerating the demand for higher pattern
placement accuracy to be achieved in the upcoming lithography generations. One of the biggest error sources of pattern
placement accuracy on an EB mask writer is the resist charging effect. In this paper, we provide a model to describe the resist
charging behavior on a photomask written on our EBM-6000 system. We found this model was very effective in correcting
and reducing the beam position error induced by the charging effect.
Extreme ultra-violet (EUV) lithography is one of the leading potential solutions for next generation lithography. Image
placement (IP) errors specific to EUV mask induced by non-telecentricity have to be minimized to satisfy the strict IP
requirement. IP accuracy of EUV mask is considerably influenced by electro-static chuck (ESC) characteristics and
backside non-flatness of each blank when it is held by ESC in EB mask writer, IP metrology tool, and exposure tool as
suggested in SEMI standard. We propose to apply the correction technique to each EUV mask in EB mask writing with
flatness data of blank and ESC to minimize IP errors caused by mask non-flatness and ESC characteristics. In
addition, IP control methodology for EUV mask with conventional IP metrology tool is proposed for pattern writing by
EB mask writer with this correction technique. Early development of EUV mask patterning is enabled by this IP control
methodology without substantial changes to the current mask process.
Double pattering or exposure methodologies are being adopted to extend 193nm optical lithography. These
methodologies require much tighter image-placement accuracy and Critical Dimension (CD) controls on mask than the
conventional single exposure technique. Our experiments indicate that the global image placement drift induced by the
time elapsed in mask writing is the dominant factor that degrades image-placement accuracy. In-situ grid measurement
method is being proposed to suppress this time dependent drift. Resist charging effect is also an important error factor.
While it can be reduced by charge dissipation layer (CDL), further feasibility study is required for using CDL to
overcome certain side-effects pertaining to CDL. High dose resist improves local CD uniformity and pattern fidelity.
However, mask writing time becomes longer with lower sensitivity. To satisfy conflicting issues, throughput and CD
uniformity, high sensitivity CAR which has short acid diffusion length is desirable. Shortening acid diffusion length is
essential for achieving good pattern resolution as well as good CD uniformity. This paper will address the results of
error source analyses and key schemes of accuracy improvements in photo-mask manufacturing using NuFlare
Technology's EB mask writers.
Despite the remarkable progress made in extending optical lithography to deep sub-wavelength imaging, the limit for the
technology seems imminent. At 22nm half pitch design rules, neither very high NA tools (NA 1.6), nor techniques such
as double patterning are likely to be sufficient. One of the key challenges in patterning features with these dimensions is
the ability to minimize feature roughness while maintaining reasonable process throughput. This limitation is particularly
challenging for electron and photon based NGL technologies, where fast chemically amplified resists are used to define
the patterned images. Control of linewidth roughness (LWR) is critical, since it adversely affects device speed and
timing in CMOS circuits.
Imprint lithography has been included on the ITRS Lithography Roadmap at the 32 and 22 nm nodes. This technology
has been shown to be an effective method for replication of nanometer-scale structures from a template (imprint mask).
As a high fidelity replication process, the resolution of imprint lithography is determined by the ability to create a master
template having the required dimensions.
Although the imprint process itself adds no additional linewidth roughness to the patterning process, the burden of
minimizing LWR falls to the template fabrication process. Non chemically amplified resists, such as ZEP520A, are not
nearly as sensitive but have excellent resolution and can produce features with very low LWR. The purpose of this paper
is to characterize LWR for the entire imprint lithography process, from template fabrication to the final patterned
substrate.
Three experiments were performed documenting LWR in the template, imprint, and after pattern transfer. On average,
LWR was extremely low (less than 3nm, 3σ), and independent of the processing step and feature size.
Critical to the success of imprint lithography and Step and Flash Imprint Lithography (S-FIL®) in particular is the
manufacturing 1X templates. Several commercial mask shops now accept orders for 1X templates. Recently, there have
been several publications addressing the fabrication of templates with 32nm and sub 32nm half pitch dimensions using
high resolution Gaussian beam pattern generators. Currently, these systems are very useful for unit process
development and device prototyping. In this paper, we address the progress made towards full field templates suitable
for the fabrication of CMOS circuits.
The starting photoplate consisted of a Cr hard mask (≤ 15nm) followed by a thin imaging layer of ZEP 520A. The
EBM-5000 and the EBM-6000 variable shape beam pattern generators from NuFlare Technology were used to pattern
the images on the substrates. Several key specifications of the EBM-6000, resulting in improved performance over the
EBM-5000 include higher current density (70 A/cm2), astigmatism correction in the subfields, optimized variable stage
speed control, and improved data handling to increase the maximum shot count limitation.
To fabricate the template, the patterned resist serves as an etch mask for the thin Cr film. The Cr, in turn, is used as
an etch block for the fused silica. A mesa is formed by etching the non-active areas using a wet buffered oxide etch
(BOE) solution. The final step in the template process is a dice and polish step used to separate the plate into four
distinct templates.
Key steps in the fabrication process include the imaging and pattern processes. ZEP520A was chosen as the e-beam
resist for its ability to resolve high resolution images. This paper documents the resolution and image placement
capability with the processes described above. Although ZEP520A is slow relative to chemically amplified e-beam
resists, it is only necessary to pattern 1/16th the area relative to a 4X reduction mask. Write time calculations for 1X
templates have also been performed, and are compared to 4X photomasks.
Double exposure / Double pattering methodologies are being adopted to extend 193nm optical lithography until the next
generation lithography, most likely the EUV, is solidified. The Double exposure / Double patterning methodologies
require tighter image-placement accuracy and Critical Dimension (CD) controls on a mask than the conventional single
exposure technique. NuFlare Technology's mask writer, EBM-6000 (1), is capable of achieving the required CD control
and high patterning resolution as fine as 35 nm, that are required for the hp 45nm lithography with Double exposure /
Double patterning methodologies, when newly developed resist (i.e. "low-sensitivity" resist) is used, as shown at several
occasions to date. Further, image-placement control with EBM-6000 has been improved based on extensive error
budget analysis to comply with the tight image-placement specifications required by the Double exposure / Double
Patterning lithography. This paper will show the results of the analysis and improvement of the image-placement
accuracy of EBM-6000 series mask writers.
Image placement (IP) errors caused by electro-static chuck (ESC) and non-flatness of mask are additional factors in
writing extreme ultra-violet (EUV) mask, and minimizing their influences is being fervently addressed. New correction
technique of EBM-6000 has been developed for EUV mask writing based on the conventional grid matching correction
(GMC) without ESC to obtain good reproducibility to satisfy user's requirement to develop EUV mask at an early stage.
Heating effect was evaluated for EBM-6000 which is operated at high current density of 70A/cm2 and acceleration
voltage of 50kV. FEP171 as widely used for current productions and lower sensitivity resists are tested. Lower
sensitivity resist is one of key items to achieve highly accurate Local critical dimension uniformity (LCDU) because of
shot noise reduction.
CD variations in experiment are compared with simulated temperature changes induced by heating effect. Then, the
ratio, ΔCD/ΔT, is found mostly constant for every resist, 0.1 nm/C°.
Writing conditions are estimated to meet CDU spec of hp45 generation for a worst case pattern, i.e. 100% density
pattern. For FEP171, the maximum shot size of 0.85 μm shot size at 2pass writing mode is sufficient. It should be
reduced to 0.5 μm at 2pass writing mode for every lower sensitivity resist. When 4pass writing mode is used, the
maximum shot size of 0.85 μm is available. Writing conditions and writing time for realistic patterns are also discussed.
KEYWORDS: Photomasks, Line edge roughness, Error analysis, Electron beams, Manufacturing, Data conversion, Electron beam melting, Optical proximity correction, Electro optical systems
EBM-5000 equipped with the new feature of high current density (50A/cm2) has been developed for 45 nm technology node (half pitch (hp) 65 nm). EBM-5000 adopts 50 kV variable shaped electron beam (VSB)/vector scan architecture and continuous motion stage, following the steps of preceding EBM series. In addition to the high current density, new technologies such as high resolution electron optics, finer increment for beam position and exposure time control, and new data format "VSB-12" to handle large data volume have been introduced on EBM-5000. These new technologies address two conflicting issues: improvement of throughput and better accuracy. This paper will report the key challenging technologies, certain results of EBM-5000 operation and findings obtained through our development efforts that can be applied to future generation tools. The fundamental local CD uniformity (LCDU) limit is also discussed.
A stage tracking function has been developed for a mask-scan EB mask writer. Position error of EB mask on an EB-mask-stage induces position error of projection beam on the EB-mask and the position of a writing pattern. The position of the EB-mask is measured by a laser interferometer. The shift from the aimed position is fed back to a mask selection deflection and a main deflection. The velocity of EB-mask stage and specimen-stage is also fed back to the deflection. The deflection control unit for the stage tracking has been made and the tracking function confirmed from the test memory of the unit. Using the unit, scanning writing patterns have been obtained with step and repeat stage mode.
A high accuracy electron beam writing system EBM-3500 has been developed for 130 nm node lithography technology. The EBM-3500 is based on its predecessor EBM-3000 system and incorporates new features to improve writing accuracies. Based on the extensive error analyses of the EBM-3000, several important improvements in such areas as ground noise and stray magnetic field reductions, among others, have been made. Thanks to these improvements, EBM-3500 achieves high accuracies to satisfy the present and future technology requirements.
KEYWORDS: Magnetism, Chromium, Electron beams, Objectives, Information operations, Quartz, Reticles, Magnetic semiconductors, Semiconductors, Optical simulations
A semi-in-lens electron beam (EB) optical system improves the beam resolution. However, the eddy current is induced in the target and deviates the beam position when the stage is moving continuously. We calculated the eddy current distribution by approximating the magnetic field on the target to a Gaussian distribution. In the mask-scan EB column1 the maximum value and the dispersion of the magnetic field on the target are 0.01 T and 30 mm, respectively. The beam shift due to the eddy current flowing in the Cr film on a reticle is 1.5 X 10-11 m at the stage speed of 0.1 m/s. Therefore, the eddy current does not degrade the positional accuracy.
KEYWORDS: Silicon, Electrons, Sensors, Beam shaping, Photomasks, Monte Carlo methods, Lithography, Etching, Electron beams, Scanning electron microscopy
A new beam-monitoring system for electron-beam lithography is proposed, which can be used for the variably shaped beam (VSB) method, the character projection (CP) method and the electron- beam mask (EB mask) projection method. The system is composed of micro-apertures and a detector placed below the micro- aperture, which is installed at a focal plane of a mask writer. The micro-apertures are formed on a 1-micrometer-thick Si film on which two 200-nm-thick W layers are deposited. A shaped beam is scanning over the micro-aperture, and the electrons that pass through the micro-aperture are directly detected with the detector, so that the two-dimensional shape and size of the beam are measured. The contrast and the signal-to-noise ratio obtained by this system are greatly superior to those obtained by the conventional mark-scanning method.
A deficiency in throughput is one of the main problems for the post-100 nm generation mask writer. Mask-scan writing technology is one of the methods for increasing in the throughput. A large pattern is projected by scanning the electron beam over the mask pattern. We have developed a low aberration optical column to prove the concept of the mask- scan technology. We obtained the EB mask pattern image by scanning the electron beam over the mask. We confirmed the capability of the astigmatism correction by the bias voltage superposed on the main field deflectors.
Novel beam monitoring methods for electron beam lithography systems were studied. In order to achieve high patterning accuracy, precise control of the beam position and of the beam exposure time is important. In conventional electron beam writing system, the written patterns are measured in order to evaluate the accuracy of the writing system. In this paper, two in-situ beam monitoring methods are proposed. One is the beam position monitoring method using a magnification lens and a microchannel plate (MCP) with a CCD camera. The beam image data projected on the MCP were observed using the prototype electron optical system. The beam position could be calculated by an image processing method. Also the simulation result of the conceptual in-situ beam monitoring system was shown. The other one is the beam blanking response measurement method using a fast MCP which has good pulse resolution and a fast response. The MCP output of pulse waveforms correlated with the beam blanking signal were observed with a good time resolution.
In order to obtain a precise dose control for proximity effect correction, a fast beam blanking system has been developed which can make possible the fine control of the beam pulse width with precision of less than 1 nanosecond. The system consists of a high precision blanker driving circuit and a blanking structure suitable for fast operation. The blanker driving circuit controls the pulse width by selecting delay line logic with required delay. The pulse width control of less than 1 nanosecond and pulse rising time of less than 10 nanoseconds were achieved. A coaxial structure was adopted for the blanking structure. The simulation study has shown that a blanking structure with low reflectance in a few GHz range is achievable. The pulse passed through an experimental blanking structure without distortion in waveform.
We have developed a new EB calibration method for adjusting both Koehler illumination condition and beam current density precisely in the EB direct writing system EX-8D. Koehler illumination condition is adjusted by controlling the condenser lens so that the beam size change on the target vs. focus change of the objective is minimized. Beam current density is adjusted to the desired value by controlling the two condenser lenses which acts as a zoom lens function and maintaining above Koehler illumination condition. Using this method, beam size deviation was improved to less than 2 nm for a focus change of 10 micrometers , and beam current density was controlled to less than 0.5 percent error from the desired value. This beam calibration was executed in less than 10 minutes. We have also evaluated the pattern roughness and the pattern size deviation depending on the focus change by delineating a 0.125 micrometers line and space pattern. The pattern roughness was controlled to less than 2 nm and the pattern size deviation was less than 2 nm for a focus change of +/- micrometers .
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.