This will count as one of your downloads.
You will have access to both the presentation and article (if available).
We describe the conceptual design of the instrument. In particular, we explain the design and analysis of the straylight rejection baffles and occulter needed to block the image of the solar disc, in order to render the much fainter corona visible. We discuss the development of in-house analysis code to predict the straylight diffraction effects that limit the instrument’s performance, and present results, which we compare against commercially available analysis tools and the results from breadboard testing. In particular, we discuss some of the challenges of predicting straylight effects in this type of instrument and the methods we have developed for overcoming them.
We present the test results from an optical breadboard, designed to verify the end-to-end straylight rejection of the instrument. The design and development of both the breadboard and the test facility is presented. We discuss some of the challenges of measuring very low levels of straylight and how these drive the breadboard and test facility design. We discuss the test and analysis procedures developed to ensure a representative, complete characterisation of the instrument’s straylight response.
In all configurations, the diffraction grating will lose a greater fraction of scientific light than any other single optic in the instrument. Additionally, manufacturers are often unable to measure the fraction of transmitted light at HARMONI's longest wavelengths. For these reasons, we have developed a setup to measure the efficiencies of transmission diffraction gratings across HARMONI's bandpass. The setup uses modulated signals, a single detector, and a lock-in amplifier to minimize sources of systematic errors. A modified version of this setup may be used to measure stray light. These setups and initial results are presented.
The camera utilises an off-axis three mirror system, which has the advantages of excellent image quality over a wide field of view, combined with a compactness that makes its overall dimensions smaller than its focal length. Keeping the costs to a minimum has been a major design driver in the development of this camera.
The camera is part of the TopSat mission, which is a collaboration between four UK organisations; QinetiQ, Surrey Satellite Technology Ltd (SSTL), RAL and Infoterra. Its objective is to demonstrate provision of rapid response high resolution imagery to fixed and mobile ground stations using a low cost minisatellite.
The paper “Development of the TopSat Camera” presented by RAL at the 5th ICSO in 2004 described the opto-mechanical design, assembly, alignment and environmental test methods implemented. Now that the spacecraft is in orbit and successfully acquiring images, this paper presents the first results from the camera and makes an initial assessment of the camera’s in-orbit performance.
We present an overview of the design, which includes suitable actuators for wavefront correction, petal deployment mechanisms and lightweight mirror technologies. Preliminary testing results from manufactured lightweight mirror samples will also be summarised.
View contact details
No SPIE Account? Create one