Over the past decades, particle characterisation has emerged as a pivotal field, consistently demonstrating its potential through advancements in particle synthesis and the enhanced understanding of diverse applications utilising specialized particles. Shape is an important physical property of a particle and makes an impact on other properties of the particle, thus it is worth exploring. There are many techniques for measuring the shape of particles, from micrometer sized to nanometer sized. However, it is not possible to achieve accurate in situ, single-particle measurements in fluids with current methods while such measurements have great potential in areas like water quality monitoring. In this work, we demonstrated a novel technique to measure the aspect ratio of a single particle using open-access microcavities. By probing the perturbation of a rod-shaped particle in water to the optical mode formed in the microcavity, we are able to extract quantitative information about the particle, namely the aspect ratio. We apply this technique to two types of gold nanorods as well as probiotics samples to illustrate its wide applications to different materials and sizes.
Laser-written Nitrogen Vacancy (NV−) centers are combined with transfer-printed GaN micro-lenses to increase fluorescent light collection by reducing total internal reflection at the planar diamond interface. We find a 2x improvement of fluorescent light collection using a 0.95 NA air objective at room temperature, in agreement with FDTD simulations. The nature of the transfer print micro-lenses leads to better performance with lower Numerical Aperture (NA) collection, as confirmed by results with a 0.5NA air objective which show improvement greater than 5x. The approach is attractive for scalable integrated quantum technologies.
In this work, we demonstrate two developments, in device and material engineering respectively, towards an efficient spin-photon device using colour centres in diamond for scalable quantum computing networks: firstly, we report the emission enhancement of the coherent zero-phonon-line transistion of an nitrogen vacancy centre in a diamond membrane on coupling to a tunable open-cavity; secondly, we present a new method for deterministic writing of NV arrays in bulk diamond with a 96% yield of single defects, a 50 nm positional accuracy in the image plane, and NV electron spin coherence (T2) times of up to 170 microseconds.
The negatively charged nitrogen vacancy centre in diamond is known for its coherent spin properties and optical interface, and thus is regarded a promising candidate for quantum information applications [1]. Realisation of an efficient spin-photon interface with the NV centre is made challenging however by the fact that, in bulk diamond, only 3-4% of spontaneously emitted photons occur in the zero phonon line (ZPL). Placing NV centre in an optical cavity is being explored by several groups [2][3][4] as an effective way to selectively enhance the coherent emission of NVs and thereby increase the efficiency of the coherent spin-photon coupling. Previous work reported successful coupling of the NV in nano-diamond to an open access micro-cavity and observed enhanced ZPL emission [5]. However the NV centres in nano-diamond suffer from broadened zero phonon transition and poor spin coherence. By fabricating NV centres in a ~micrometre thick membrane of high purity single crystal material we can take advantage of the tunability of open access cavities, and at the same time, provide close-to-bulk crystal environment to maintain the coherent spin properties of the NV centres. Here we report our work on the tunable cavity coupling of the ZPL of a NV centre in a 1.2micrometre-thick diamond membrane at 4K. The diamond membrane is fabricated from a 0.5mm-thick E6 CVD diamond plate where ion implantation is carried out on both surfaces to create NV centres at the depth of around 70nm. The plate is then machined into 30micrometre-thick slices, and thinned by ICP-RIE with a combination of Ar/Cl[6] and pure oxygen plasma etching recipes. The open cavity consists of a concave mirror (99.99% reflectivity) deposited on a template fabricated using Focused Ion Beam (FIB) milling[7] and a planar mirror (99.8% reflectivity) which supports the membrane. For bare cavities with mirror radii of curvature (RoC) of 12micrometre, we measured a finesse of F~2000 and mode volume as small as 0.75micrometre^3. In-situ tuning of the cavity resonance is achieved with piezoelectric actuators. When mounted in our bath cryostat the cavity modes have dominant Lorentzian line profiles which indicate a passive stability of the cavity length of better than 0.15nm. No active locking is currently deployed. With the presence of a diamond membrane inside the cavities, the measured finesse and mode volume of a cavity with 12micrometre RoC are found to be around 300 and 3 micrometre^3, respectively. We attribute the reduction in finesse to scattering at the membrane-air and membrane-mirror interfaces. On coupling to the ZPL of a target NV centre, we record a factor of 4 increase in the saturated intensity of ZPL fluorescence compared to that measured from the same NV centre in absence of the concave mirror. This result is consistent with the calculated Purcell factor of 16 combined with a relatively low efficiency of light extraction (estimated to be around 19%) from the cavity due to the scattering losses.
Single photons are the key ingredient for many photonic quantum technologies including quantum key distribution and measurement-based quantum computing. However, it remains difficult to create devices with the appropriate specifications for use in non-laboratory environments. The optical microcavity platform provides an attractive route towards a room temperature single photon source device. Our ultra-small focused ion beam (FIB) milled open-access cavities offer enhancement of the spontaneous emission rate, tunability of the emission spectrum and increased light collection. The embedment of solid-state emitters within these cavities enables us to create a robust room temperature single photon source device, with the potential for high efficiencies and single photon purities.
Defects such as the nitrogen-vacancy (NV) centre in diamond have been shown to be stable room-temperature sources of single photons. There are new single emitters emerging in two-dimensional materials such as hexagonal boron nitride (hBN). Here we present developments in room-temperature coupling of single defects to open-access microcavities of a planar-hemispherical geometry with mode volumes down to λ3. We report enhancements in the spectral density of photons into a single cavity mode, combined with improved single photon purities. It will be shown that the NV-cavity system provides a ~3% single photon emission efficiency with purities of up to 94%. The hBN-cavity system provides count rates >1Mcts/s into a single cavity mode with purities up to 96%. With these high single photon purities, such devices would be robust against photon number splitting attacks making them attractive for applications in quantum cryptography.
Recent demonstrations of entanglement between two remote Nitrogen-Vacancy centers, have opened the way for their use in distributed quantum networks. An efficient spin-photon interface will now be required to help realize this system as a technology.
Here we demonstrate the tunable enhancement of the zero phonon line of a single nitrogen-vacancy colour centre in nanodiamond at cryogenic temperatures. A plano-hemispherical open cavity, fabricated using focused ion beam milling provides mode volumes as small as 1.25 cubic microns and quality factor Q ~ 3000. It will be shown how the open geometry and independently adjustable mirrors allows for precise placement of the emitter in the centre of the cavity mode, and crucially enables in-situ tuning of the cavity resonances. At optimal coupling, the signal from individual zero phonon line transitions is enhanced by a factor of 6.25 through the Purcell effect and the overall emission rate of the NV- centre is increased by 40% compared with that measured from the same centre in the absence of cavity field confinement. This Purcell enhancement is mapped out as a function of cavity mode volume.
These results represent a proof of principle for a tunable cryogenic spin-photon interface. However by far the best NV optical and spin coherences are to be found in bulk material and efforts towards the production of diamond membranes are currently being made, with dimensions suitable for open-cavity coupling. Efforts towards this and preliminary results will also be discussed.
Thanks to their low mode volume and high finesse, optical microresonators have emerged as a promising avenue to detect and measure properties of single nanoparticles such as viruses or gold nanoparticles. Thanks to the resulting electromagnetic field enhancement, small nanoparticles, viruses and even single proteins have been trapped in hollow resonators such as photonic crystals or plasmonic tweezers. Such trapping devices with sensing capabilities are on the verge of finding powerful applications in interdisciplinary science. However, the quest for a candidate bringing together in-situ detection, trapping and multiple quantitative measurements of the particle properties supported by a comprehensive understanding still remain elusive.
In this work, we show that open-access microcavities fulfil these criteria. Such resonators are made up of two micro-mirrors facing each other separated by a fluid medium in which nanoparticles can diffuse. We have recorded the cavity mode spectra while nanoparticles were optically trapped. Our results demonstrate that these microcavities can be used as optical tweezers with in-situ force calibration and nanoparticle sensing capabilities, including measurement of shape anisotropy. The shift in cavity mode wavelength during a trapping event provides information on both the nanoparticle and trap properties, as well as on the trapping force holding the particle in the trap. We are able to determine in real-time the nanoparticle polarizability, i.e. its optical response to an electromagnetic field, its coefficient of friction and characterize its shape anisotropy. The high level of control in this device makes it a robust analytical tool for real-time nanoparticle characterisation and monitoring.
Recent developments in the theory of measurement-based quantum computing reduce the problem of building
a quantum computer to that of achieving high quality rotation and measurement of single qubits. The first
generation of such machines may well therefore consist of individual modules each containing a single quantum
system that embodies the qubit. The first demonstrations of entanglement of electronic qubits by measurement
have been performed recently in ion traps. The leading contenders for physical qubits in the solid state are the
negatively charged nitrogen-vacancy defect in diamond and the Stranski Krastanow quantum dot, each of which
offers long electronic spin dephasing times and convenient spin-sensitive optical transitions. In this article we
will compare the strengths and weaknesses of these two systems and discuss some of the challenges to be met in
constructing a measurement based quantum computer in the solid state.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.