The market transition from 2D to 3D-NAND in recent years requires strict focus control and monitoring solutions. ASML’s μDBF targets (micro Diffraction Based Focus) enable on-product focus measurement which can be used to optimize scanner correction. Additionally, dense computational focus maps can be generated by combining μDBF measurements with scanner metrology such as non-correctable leveling error. This paper discusses the focus variability observed on memory layers through on product focus monitoring. This work will show how exposure at best focus can be performed for immersion lithography in the case of strong focus fingerprints. Focus monitoring data from μDBF and computational focus metrology will be used to generate and apply corrections on two 3D-NAND layers.
KEYWORDS: Etching, System on a chip, Process control, Factor analysis, Semiconductors, Tolerancing, Semiconducting wafers, Photoresist processing, Optical lithography, Plasma, Inspection
In recent year, the thermal effect has become a critical issue on the operation of memory cell. As heating time or temperature increases, the performances of memory cells are degraded due to its low thermal stabilities. Therefore, processes working at low temperature are necessary not to hurt the thermal stability. In this paper, we introduced LTSOC (Low Temperature Spin-On Carbon), which is believed to minimize the thermal loads because its cross-linker works at low temperature. Also, it would be important to fulfill the needs for the other properties of SOC like filling ability and etching resistance. So, we verified all these basic characteristics with proper resist and etching processes by getting good final pattern profile. As a result, LT-SOC is suggested for etching barrier without affecting on cell operation of memory devices.
As pattern design rule of device shrinks, CD control becomes more critical and important especially for resistance devices. As CD (Critical Dimension) increases, CDU (Critical Dimension Uniformity) becomes worse generally. The question with this relationship is a starting point of our study. Mainly we focused on two points. One is which factor affects CDU. The other is whether CDU degradation with large CD happens at all cases or not. We have analyzed with simulation and experiment results about CDU with splitted mask layout CD under limited conditions such as same equipment, illumination and exposure dose. As a result, we will show the relationship between CD size and CDU.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.