NEID is an optical, Extreme-Precision Radial Velocity (EPRV) spectrometer installed at the WIYN 3.5 m Telescope at Kitt Peak National Observatory near Tucson, AZ, USA. Primarily designed to find, confirm, and characterize planets outside of the solar system, NEID was built as part of the joint NASA-NSF Exoplanet Observational Research Program (NN-EXPLORE). Through the NN-EXPLORE program, ~50% of WIYN science time is made available to the public through standard NOIRLab bi-annual proposal calls. The other approximately 50% of WIYN science time is available to WIYN institutional partners. NEID entered full science operations in 2021B and is operated in queue mode, with a team of dedicated NEID Queue Observers carrying out nighttime operations. Currently, the NEID queue makes up approximately 70-80% of the available WIYN telescope time, with the other approximately 20-30% of the time made up of a combination of classically and queue scheduled time on other instruments. Operating NEID in queue mode is crucial for executing high cadence programs such as the publicly available NEID Standard Star program. Here we discuss the lessons learned in the early years of instituting and running a modern queue at a telescope that maintains some classical observing. We will give an overview of the software and staffing required to effectively run the queue and how we have both upgraded the software and modified operational procedures to increase efficiencies.
The NEID spectrograph on the WIYN 3.5-m telescope at Kitt Peak has completed its first full year of science operations and is reliably delivering sub-m/s precision radial velocity measurements. The NEID instrument control system uses the TIMS package (Bender et al. 2016), which is a client-server software system built around the twisted python software stack. During science observations, interaction with the NEID spectrograph is handled through a pair of graphical user interfaces (GUIs), written in PyQT, which wrap the underlying instrument control software and provide straightforward and reliable access to the instrument. Here, we detail the design of these interfaces and present an overview of their use for NEID operations. Observers can use the NEID GUIs to set the exposure time, signal-to-noise ratio (SNR) threshold, and other relevant parameters for observations, configure the calibration bench and observing mode, track or edit observation metadata, and monitor the current state of the instrument. These GUIs facilitate automatic spectrograph configuration and target ingestion from the nightly observing queue, which improves operational efficiency and consistency across epochs. By interfacing with the NEID exposure meter, the GUIs also allow observers to monitor the progress of individual exposures and trigger the shutter on user-defined SNR thresholds. In addition, inset plots of the instantaneous and cumulative exposure meter counts as each observation progresses allow for rapid diagnosis of changing observing conditions as well as guiding failure and other emergent issues.
NEID (NN-explore Exoplanet Investigations with Doppler spectroscopy) is an optical, fiber-fed spectrometer at the WIYN 3.5m Telescope. NEID’s single-measurement radial velocity precision (27 cm/s) requires the stellar image motion (induced by atmospheric turbulence) to be controlled for 90% of the time to within 50 milli-arcseconds in nominal observing conditions. This has been achieved by fast guiding through the NEID Port Adapter, which implements an EMCCD and a tip/tilt piezo stage to capture/stabilize the stellar image. Here, we use on-sky data accumulated over a year to demonstrate the performance of this system under diverse observing conditions.
Here we detail the on-sky performance of the NEID Port Adapter one year into full science operation at the WIYN 3.5m Telescope at Kitt Peak National Observatory. NEID is an optical (380-930 nm), fiber-fed, precision Doppler radial velocity system developed as part of the NASA-NSF Exoplanet Observational Research (NN-EXPLORE) partnership. The NEID Port Adapter mounts directly to a bent-Cassegrain port on the WIYN Telescope and is responsible for precisely and stably placing target light on the science fibers. Precision acquisition and guiding is a critical component of such extreme precision spectrographs. In this work, we describe key on-sky performance results compared to initial design requirements and error budgets. While the current Port Adapter performance is more than sufficient for the NEID system to achieve and indeed exceed its formal instrumental radial velocity precision requirements, we continue to characterize and further optimize its performance and efficiency. This enables us to obtain better NEID datasets and in some cases, improve the performance of key terms in the error budget needed for future extreme precision spectrographs with the goal of observing ExoEarths, requiring ∼ 10 cm/s radial velocity measurements.
The NEID extreme precision radial velocity spectrometer is in operation at the WIYN 3.5-meter telescope located at the Kitt Peak National Observatory, Tucson, Arizona. This newly-commissioned instrument serves both the national exoplanet research community as well as the WIYN consortium partners. In order to meet the stringent 27 cm per second radial velocity precision[1], and in particular to maximize the efficiency of the 5-year radial velocity survey, it is critical to understand the WIYN telescope vibration environment. In this presentation, we describe the vibration measurement techniques and results used for quantifying the vibration of: the telescope ancillary equipment, the telescope mount, the telescope primary mirror cooling systems, the telescope instruments, wind, and other sources and their effect on the telescope image. Additionally, mitigation methods, current and planned are discussed. This work continues on from a previous paper at this conference[2], where we presented data gathered from accelerometers on WIYN to begin identifying major features in the vibration spectra and simulate the input to the tip-tilt correction system for the NEID fiber-feed. The WIYN telescope has a well-ventilated and compact dome that ensures excellent seeing, but is also prone to wind-shake. For wind-related vibrations in particular, it is important to model the structural modes to design mitigation strategies and here we discuss possible experimental methods and data analysis techniques to address this. This work will be relevant to upgrade and retrofit efforts as older observatories incorporate low-order wavefront correction to stabilize light to advanced spectrometers and imagers. See Li et al. (this conference).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.