In this work, a dynamic metallic filamentary resistive switch (MFRS) is used to quench the avalanche in a single photon avalanche photodiode (SPAD). The experimental results and simulations are consistent with an interpretation that, the MFRS is in a high resistance state when the avalanche occurs. This enables the quenching of the avalanche sufficiently within a short time. This increases the voltage drop across the MFRS, which switches the MFRS to its low resistance on-state and the recharging process is greatly accelerated because of the lowered R-C time constant. This leads to a sharp avalanche pulse shape and a fast detection speed.
Many III-V digital alloy avalanche photodiodes have experimentally demonstrated very low excess noise. The presence of minigaps and enhanced valence band effective mass leads to the enhanced performance. Using first principle calculations and environment-dependent tight binding model we study the correlation of these properties with material parameters like stress. Furthermore, using NEGF formalism we study how these minigaps and mass enhancement impact the electron tunneling and phonon scattering processes in digital alloys. Based on our calculations, we propose some empirical inequalities for quantifying the effectiveness of such minigaps in making the device unipolar and thus high gain.
In this work, a novel smart quenching approach for a Geiger-mode single-photon avalanche diode is proposed. The avalanche photodiode is connected in series with a metallic filamentary resistive switch (MFRS). The hysteresis behavior of the MFRS makes it suitable to operate as a quenching resistor. Initially the MFRS is in the off state and it quenches an avalanche event triggered by an incident photon. After quenching, the MFRS switches to the low-resistance on-state, which reduces the R-C time constant of the recharging process. A sharp avalanche pulse shape, continuous detection, and fast detection speed have been achieved. Our observations are consistent with a model where the MFRS adaptively changes its resistance state from high to low during quenching and recharging.
KEYWORDS: Systems modeling, Avalanche photodetectors, Avalanche photodiodes, Telecommunications, Monte Carlo methods, Instrument modeling, Internet, Photonic devices, Electronic components, Sensing systems
Some III-V digital alloy avalanche photodiodes demonstrate very low excess noise making them suitable for single photon detection applications. This behavior is attributed to the presence of minigaps in the valence band and high hole effective mass which reduce hole impact ionization. In this work, we present a physics based SPICE compatible compact model for these low noise avalanche photodiodes built from parameters extracted from Environment-Dependent Tight Binding model, that is calibrated to ab-initio Density Functional Theory, and Monte Carlo methods. Using this approach, we can accurately capture the physical characteristics of APDs in integrated photonics circuit simulation.
The high-gain photomultiplier tube (PMT) is the most popular method to detect weak ultra-violet signals which attenuate quickly in atmosphere, although the vacuum tube makes it fragile and difficult to integrate. To overcome the disadvantage of PMT, an AlN/GaN periodically–stacked-structure (PSS) avalanche photodiode (APD) has been proposed, finally achieving good quality of high gain and low excessive noise. As there is a deep г valley only in the conduction band of both GaN and AlN, the electron transfers suffering less scattering and thus becomes easier to obtain the threshold of ionization impact. Because of unipolar ionization in the PSS APD, it works in linear mode. Four prototype devices of 5-period, 10-period, 15-period, and 20-period were fabricated to verify that the gain of APD increases exponentially with period number. And in 20-period device, a recorded high and stable gain of 104 was achieved under constant bias. In addition, it is proved both experimentally and theoretically, that temperature stability on gain is significantly improved in PSS APD. And it is found that the resonant enhancement in interfacial ionization may bring significant enhancement of electron ionization performance. To make further progress in PSS APD, the device structure is investigated by simulation. Both the gain and temperature stability are optimized alternatively by a proper design of periodical thickness and AlN layer occupancy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.