III-V devices are used in countless applications due to their excellent physical properties. They could become more prevalent, especially in area-intensive applications such as solar power, if they can achieve significant cost decreases through increasing scale. The development of high-throughput growth systems can help to achieve this scale, leading to the use of III-V devices in areas where they are not currently economically feasible. Here, we describe a pilot-production, pseudo inline HVPE reactor with the potential to greatly increase the throughput of III-V devices. We show computational modeling results that both informed system design and the understanding of the impact of different process parameters on the deposition. We show the throughput possibilities of this reactor with an example solar cell device design but note that this system is agnostic to the device structure and can be used to increase the throughput of lasers, LEDs, transistors, and more III-V devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.