Immersion lithography is being extended beyond the 10-nm node and the lithography performance requirement needs to be tightened further to ensure good yield. Amongst others, good on-product focus control with accurate and dense metrology measurements is essential to enable this. In this paper, we will present new solutions that enable onproduct focus monitoring and control (mean and uniformity) suitable for high volume manufacturing environment. We will introduce the concept of pure focus and its role in focus control through the imaging optimizer scanner correction interface. The results will show that the focus uniformity can be improved by up to 25%.
One of the keys to successful mass production of sub-20nm nodes in the semiconductor industry is the development of an overlay correction strategy that can meet specifications, reduce the number of layers that require dedicated chuck overlay, and minimize measurement time. Three important aspects of this strategy are: correction per exposure (CPE), integrated metrology (IM), and the prioritization of automated correction over manual subrecipes.
The first and third aspects are accomplished through an APC system that uses measurements from production lots to generate CPE corrections that are dynamically applied to future lots. The drawback of this method is that production overlay sampling must be extremely high in order to provide the system with enough data to generate CPE. That drawback makes IM particularly difficult because of the throughput impact that can be created on expensive bottleneck photolithography process tools.
The goal is to realize the cycle time and feedback benefits of IM coupled with the enhanced overlay correction capability of automated CPE without impacting process tool throughput. This paper will discuss the development of a system that sends measured data with reduced sampling via an optimized layout to the exposure tool’s computational modelling platform to predict and create “upsampled” overlay data in a customizable output layout that is compatible with the fab user CPE APC system. The result is dynamic CPE without the burden of extensive measurement time, which leads to increased utilization of IM.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.