The Skipper-CCDs, a special type of charge-coupled device (CCD) sensor that features sub-electron readout noise levels, was proposed decades ago. However, only in recent years it has been possible to develop large size Skipper-CCDs ensuring stable operation. Their extreme low noise operation makes them suitable for experiments that require low thresholds and high energy resolution, such as dark matter and neutrino interactions detection, and more recently quantum-imaging and astronomy. New experiments are planning to use kilograms of active silicon from Skipper-CCDs as sensitive mass. In this way, they can achieve extremely low detection thresholds and a high probability of particle interaction. However, this approach needs arrays of thousands of Skipper- CCDs operating at the same time imposing challenging requirements. Also, introduction of this technology in astronomy and quantum-imaging applications requires a large number of channels per sensor to speed up the readout. The front-end needs to be redesigned from scratch: it must achieve low noise performance, be simple for easy integration and allow the routing of thousands of channels out of the sensors with minimal connections. This paper presents a detailed analysis of options for the front-end electronics and their noise performance. It describes a novel way of using a dual-slope integrator with minimal components to pile up the charge of consecutive readouts of the same pixel in a concept that we call a multi-slope integrator. This reduces drastically the output bandwidth, simplifying the wiring and the warm electronics. These proposals will allow the generation of new scientific instruments based on Skippers-CCD arrays.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.