This contribution is aimed at reviewing the impact of the atmosphere for millimeter and submillimeter wave
observations performed from platforms inside the Earth's atmosphere with special focus on interferometry and,
in particular, on the Atacama Large Millimeter Array (ALMA) project. The reference atmospheric radiative
transfer code for ALMA will be discussed along with some examples of its applications related to ground-based
submillimeter astronomy.
We discuss the use of the water vapour radiometry technique for atmospheric phase correction as applied to the Atacama Large Millimetre Array (ALMA). The atmospheric conditions derived from site test instrumentation are summarised, and the nature of the phase correction problem quantified. We then present calculations of the expected errors in the radiometrically-corrected atmospheric phase, based on estimates of the radiometer sensitivity. These results indicate how well we need to know the atmospheric structure in order to make accurate phase estimates, and have implications for the meteorological instruments needed on the site. Finally we present the results of simulations of daytime turbulence on the site, and use these to predict the phase fluctuations due to wet and dry air, and discuss their implications for phase correction at Chajnantor.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.