Lithography hotspot detection using lithography simulation (LCC) in a design stage is one of important techniques in order to avoid yield loss caused by the hotspots. Conventional LCC should detect all hotspots observed on wafer and reduce false errors which are not hotspots on wafer. However, the conventional LCC is not enough to meet the requirement. In this paper, we propose a multi-criteria hotspot detection method with a pattern classification technique. The proposed method uses a peak intensity value as the criterion and different criteria are used for different pattern categories. The categories are created based on K-means algorithm. Experimental results show our proposed method can reduce a number of false errors by 75% without any overlooking of hotspots.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.