Dual-layer detectors offer the potential for energy separation, allowing for lesion differentiation and material decomposition without the effects of motion blur that occur in dual-energy detection. We have proposed a direct/indirect dual-layer amorphous selenium (a-Se) detector, in which the direct conversion top layer absorbs low energy x-rays and higher energy x-rays pass through to be absorbed by the indirect conversion bottom layer. First studies of the indirect layer, consisting of a thin-film transistor (TFT) flat panel detector (FPD) with an a-Se photoconductive layer, show promising results, but the MTF was limited by the performance of the gadolinium oxysulfide scintillator used. To improve spatial resolution, a CsI:Tl scintillator should be employed. Unfortunately, the emission peak of CsI:Tl scintillators falls outside optimal wavelengths for a-Se photoconduction. By alloying the a-Se with Te and operating at high fields, we improve absorption and signal production in the FPD. In this work, this is we fabricate single pixel a-Se-Te detectors with a parylene blocking layer and give results for Te concentrations of 0%, 10%, 15%, and 20%. While leakage currents and lag increase with Te content, conversion efficiency is improved by over 30%, showing promise for implementation into an FPD with a CsI:Tl scintillator.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.