Micro-electromechanical Systems (MEMS) have been around since the 1960s. Early applications of MEMS were biomedical and automotive such as drug delivery system, disposable blood pressure sensors, accelerometer used in airbag sensor and antilock braking systems. Recently, this technology, known as micro-optical MEMS or MOEMS, is invading the fiber optic communication industry for its ability of moving and managing light directly without converting the optical data to electrical signal for processing, hence it is immune to bit rate and data protocol. This paper will discuss the 3D MEMS optical switch development program at Agere Systems from the design concept to volume production and the dedicated reliability program to qualify this technology for telecom applications.
Recently, optical MEMS devices have gained considerable attention in the telecommunications industry -- particularly in the optical networking and switching arenas. Since optical MEMS are micro-systems which rely on high precision optics, electronics and mechanics working in close concert, these emerging devices pose some unique packaging challenges yet to be addressed by the general packaging industry. Optical MEMS packages often are required to provide both optical and electrical access, hermeticity, mechanical strength, dimensional stability and long-term reliability. Hermetic optical access necessitates the use of metallized and anti- reflection coated windows, and ever-increasing electrical I/O count has prompted the use of higher density substrate/package technologies. Taking these requirements into consideration, we explore three ceramic packaging technologies, namely High Temperature Co-fired Ceramic (HTCC), Low Temperature Co-fired Ceramic (LTCC) and thin-film ceramic technologies. In this paper, we describe some optical MEMS packages designed using these three technologies and discuss their substrate designs, package materials, ease of integration and assembly.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.