Introduction: Laparoscopic pyeloplasty is used for the repair of uretero-pelvic junction (UPJ) obstructions. Our aim was to do it using laser tissue soldering.
Materials and Methods: We developed a tissue bonding system based on a CO2 laser, a temperature detector and infrared
transmitting optical fibers, to obtain temperature controlled laser soldering of incisions. The system was then adapted for
laparoscopic soldering of ureters of pigs.
Results: We successfully carried out laparoscopic pyeloplasty in a porcine model, using a procedure based on CO2 laser
soldering.
Conclusions: Laparoscopic laser soldering was found to be faster than suturing, it was easier to use and provided watertight bonding. This technique will be useful in other surgical procedures.
The promising clinical potential for laser welding of tissues has generated a growing interest in this field. As improved laser welding system was constructed in this work. It was based on IR transmitting AgClBr fibers for laser power delivery and for temperature control. The fiberoptic system was used to transmit CO2 laser power for tissue heating and for non contact (radiometric) temperature monitoring and control. Bladder opening (cystotomy) was performed in 38 rats and 33 of the animals underwent laser welding. In 5 rats (control group) the bladder wound was closed with one layer continuous 6-0 dexon sutures. The rats were sacrificed on days 2, 10 and 30 for histological study. The temperature control of the upper tissue surface was set at 70 plus or minus 5 degrees Celsius. Bladder closure using laser welding was successful in 31/33 (94%) of the animals. The quality of the weld was examined immediately after the operation, revealing a water tight closure of the bladder wall. The histological examination showed an excellent welding and healing of the tissue. These results demonstrate the potential of temperature controlled CO2 laser welding.
A Fourier transform IR spectrometer and IR transmitting AgClBr fibers were used for fiberoptic evanescent wave spectroscopy (FTIR-FEWS) of cancer. Malignant and healthy tissue samples were extracted from patients at the Meir Hospital in Israel, placed on a Silver Halide fiber, and measured using the FTIR-FEWS system. The IR spectra were analyzed and compared by taking the ratio of absorption of the active functional groups of Amide I at 1642 cm-1 and Amide II at 1545 cm-1. Clear differences appeared between the two types of tissue. When placing the tissue samples on bare fiber the reproducibility of the result was not satisfactory due to chemical interaction between the tissue and the fibers. This problem was solved by applying Polyethylene coating of thickness 1-2 μm on the fiber, leading to reproducible results. The results of these preliminary studies indicate that eh FTIR-FEWS technique can be used for cancer diagnostics. Combined with endoscopy this technique could be used to analyze tissues inside the body in vivo and in real time.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.