Polyamide (PA)-based backsheet as an emerging product has been developed in recent years to partially substitute fluoropolymer materials under the intensified cost-reduction pressure. However, a number of reports indicate that backsheet cracks have been observed in fielded modules in a few locations after only a few years of exposure. An in-depth analysis on degradation and crack formation and their dependence on climatic conditions is needed. In this work, the field PV modules with PA-based backsheet under five different climatic conditions up to six years were retrieved and analyzed, including humid subtropical climate (Changshu, China), dry-summer subtropical climate (Rome, Italy), marine west coast climate (Bergamo, Italy), desert climate (Arizona, United States) and tropical climate (Thailand). Macroscopic cracks in backsheet were observed for modules aged in Italy and Thailand, while only hairline cracks showed up in backsheet from Changshu, and no cracks could be seen in Arizona. Backsheet in Changshu also experienced much higher yellowing than other sites, while the gloss loss of the backsheet in Italy is the highest. Spectroscopic analyses were also performed to identify various degradation products and to understand the possible changes in degradation mechanism of backsheets under different climates. The intercorrelations between various degradation modes of PA-based backsheet and weathering factors will be further established, providing a valuable information on the material selection and lifetime prediction for the backsheet.
The selection of polymeric materials utilized in photovoltaic (PV) modules has changed relatively little since the inception of the PV industry, with ethylene-vinyl acetate (EVA), polyethylene terephthalate (PET), and fluoropolymer-based laminates being the most widely adopted primary components of the encapsulant and backsheet materials. The backsheet must serve to electrically insulate the solar cells and protect them from the effects of weathering. Due to continued downward pressure on cost, other polymeric materials are being formulated to withstand outdoor exposure for use in backsheets to replace either the PET film, the fluoropoymer film, or both. Because of their relatively recent deployment, less is known about their reliability and if they are durable enough to fulfill the ≥25 year warranties of current PV modules. This work presents a degradation analysis of field-exposed modules with polyamide- and polyester-based backsheets. Modules were exposed for up to five years in different geographic locations: USA (Maryland, Ohio), China, and Italy. Surface and cross-sectional analysis included visual inspection, colorimetry, glossimetry, and Fourier-transform infrared spectroscopy. Each module experienced different types of degradation depending on the exposure site, even for the same material and module brand. For instance, the polyamide-based backsheet experienced hairline cracking and greater yellowing and chemical changes in China (Changsu, humid subtropical climate), while in Italy (Rome, hot-summer Mediterranean climate) it underwent macroscopic cracking and greater losses in gloss. Spectroscopic studies have permitted identification of degradation products and changes in polymer structure over time. Comparisons are made to fielded modules with fluoropolymer-based backsheets, as well as backsheet materials in accelerated laboratory exposures. Implications for qualification testing and service life prediction of the non-fluoropolymer-based backsheets are discussed.
Performance of a photovoltaic (PV) module is related to the micro-environment around the module. The position of photovoltaic modules in an array row have a large effect on the yellowing and gloss of PV module backsheet exposed in Dfa climatic zone (Gaithersburg, MD) with a polyethylene naphthalate (PEN) outer layer. <Stress/ Response< models of yellowing and gloss-losing as function of location parameters of module, including the shed, row, measurement position in a same module and the distance of module location to the row center, are under development. The module installation height had the greatest influence on degradation of PEN PV backsheet in the Dfa climatic zone. The module backsheets at the end of an array have higher degradation rate (edge effect). The edge effect decreases with increasing of module installation heights.
heets are a key polymeric component of a PV module and understanding its degradation is necessary to be able to predict the lifetime of PV modules. We are developing a backsheet predictive tests and a model based on point- in-time data from analytical techniques and datastreams that are applicable to both outdoor and indoor PV module backsheet studies and are supplemented with meteorology data, climatic and brand/model, and other accessible information. The predictive tests and models will specify indoor and outdoor exposure and evaluation data acquisition criteria, variable selection, and temporal duration and variation so as to be able to predict backsheet performance in various climatic zones. This backsheet performance prediction is based on defined backsheet failures in the field, and is quantified by tracking backsheet degradation in the field so as to determine degradation rates. The backsheet lifetime performance predictive tests and models, will be developed using a Stressor / Mechanism / Response framework in which all data are categorized as stressor, mechanism and performance (response) variables and are represented as discrete points-in-time datasets. We will develop and validate these accelerated indoor exposures and evaluations and models and cross-correlate the outdoor and accelerated indoor exposures and evaluations. The evaluation techniques include nondestructive spectroscopy and microscopy techniques and destructive techniques and will provide data in predefined variables, which are used in the predictive modeling.
KEYWORDS: Solar cells, Photovoltaics, Temperature metrology, Capacitors, Data analysis, Reliability, Statistical analysis, Data modeling, Field effect transistors, Thermal modeling
Time-series insolation, environmental, thermal and power data were analyzed in a statistical analytical approach to identify the thermal performance of microinverters on dual-axis trackers under real-world operating conditions. This study analyzed 24 microinverters connected to 8 different brands of photovoltaic (PV) modules from July through October 2013 at the Solar Durability and Lifetime Extension (SDLE) SunFarm at Case Western Reserve University. Exploratory data analysis shows that the microinverter's temperature is strongly correlated with ambient temperature and PV module temperature, and moderately correlated with irradiance and AC power. Noontime data analysis reveals the variations of thermal behavior across different brands of PV module. Hierarchical clustering using the Euclidean distance measure principle was applied to noontime microinverter temperature data to group the similarly behaved microinverters. A multiple regression predictive model has been developed based on ambient temperature, PV module temperature, irradiance and AC power data to predict the microinverters temperature connected with different brands PV modules on dual-axis trackers.
We examine a proposed test standard that can be used to evaluate the maximum representative change in linear dimensions of sheet encapsulation products for photovoltaic modules (resulting from their thermal processing). The proposed protocol is part of a series of material-level tests being developed within Working Group 2 of the Technical Committee 82 of the International Electrotechnical Commission. The characterization tests are being developed to aid module design (by identifying the essential characteristics that should be communicated on a datasheet), quality control (via internal material acceptance and process control), and failure analysis. Discovery and interlaboratory experiments were used to select particular parameters for the size-change test. The choice of a sand substrate and aluminum carrier is explored relative to other options. The temperature uniformity of ±5°C for the substrate was confirmed using thermography. Considerations related to the heating device (hot-plate or oven) are explored. The time duration of 5 minutes was identified from the time-series photographic characterization of material specimens (EVA, ionomer, PVB, TPO, and TPU). The test procedure was revised to account for observed effects of size and edges. The interlaboratory study identified typical size-change characteristics, and also verified the absolute reproducibility of ±5% between laboratories.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.